Kantorovich's principle in action: $AW^*$-modules and injective Banach lattices
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 1, pp. 67-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Making use of Boolean valued representation it is proved that Kaplansky–Hilbert lattices and injective Banach lattices may be produced from each other by means of the convexification procedure. The relationship between the Kantorovich's heuristic principle and the Boolean value transfer principle is also discussed.
@article{VMJ_2012_14_1_a6,
     author = {A. G. Kusraev},
     title = {Kantorovich's principle in action: $AW^*$-modules and injective {Banach} lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {67--74},
     year = {2012},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a6/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - Kantorovich's principle in action: $AW^*$-modules and injective Banach lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 67
EP  - 74
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a6/
LA  - en
ID  - VMJ_2012_14_1_a6
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T Kantorovich's principle in action: $AW^*$-modules and injective Banach lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 67-74
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a6/
%G en
%F VMJ_2012_14_1_a6
A. G. Kusraev. Kantorovich's principle in action: $AW^*$-modules and injective Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 1, pp. 67-74. http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a6/

[1] Abramovich Y. A., Aliprantis C. D., An Invitation to Operator Theory, Amer. Math. Soc., Providence, R.I., 2002, iv+530 pp. | MR

[2] Arendt W., “Factorization by lattice homomorphisms”, Math. Z., 185:4 (1984), 567–571 | DOI | MR | Zbl

[3] Bell J. L., Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York etc., 1985, xx+165 pp. | MR | Zbl

[4] Behrends E., $M$-Structure and Banach–Stone Theorem, Lecture Notes in Math., 736, Springer, Berlin etc., 1979 | MR | Zbl

[5] Buskes G., “Separably-injective Banach lattices are injective”, Proc. Roy. Irish Acad. Sect. A, 85:2 (1985), 185–186 | MR | Zbl

[6] Buskes G., Kusraev A. G., “Representation and extension of orthoregular bilinear operators”, Vladikavkaz Math. J., 9:1 (2007), 16–29 | MR

[7] Buskes G., de Pagter B., van Rooij A., “Functional calculus in Riesz spaces”, Indag. Math. (N.S.), 4:2 (1991), 423–436 | DOI | MR | Zbl

[8] Buskes G., van Rooij A., “Squares of Riesz spaces”, Rocky Mountain J. Math., 31:1 (2001), 45–56 | DOI | MR | Zbl

[9] Cartwright D. I., “Extension of positive operators between Banach lattices”, Memoirs Amer. Math. Soc., 164 (1975), 1–48 | MR

[10] Gordon E. I., “Real numbers in Boolean-valued models of set theory and $K$-spaces”, Dokl. Akad. Nauk SSSR, 237:4 (1977), 773–775 | MR | Zbl

[11] Gordon E. I., “$K$-spaces in Boolean-valued models of set theory”, Dokl. Akad. Nauk SSSR, 258:4 (1981), 777–780 | MR | Zbl

[12] Gordon E. I., “To the theorems of identity preservation in $K$-spaces”, Sibirsk. Mat. Zh., 23:5 (1982), 55–65 | MR | Zbl

[13] Harmand P., Werner D., Wener W., $M$-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math., 1547, Springer, Berlin etc., 1993, viii+384 pp. | MR | Zbl

[14] Haydon R., “Injective Banach lattices”, Math. Z., 156 (1977), 19–47 | DOI | MR | Zbl

[15] Ivanov V. V., Banach Topologies and Kolmogorov's Problem, Preprint No 257, Sobolev Inst. Math., Novosibirsk, 2011, 16 pp. (in Russian)

[16] Kantorovich L. V., “On semiordered linear spaces and their applications to the theory of linear operations”, Dokl. Akad. Nauk SSSR, 4:1–2 (1935), 11–14

[17] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Functional Analysis in Semiordered Spaces, Gostekhizdat, Moscow–Leningrad, 1950, 548 pp. (in Russian) | Zbl

[18] Kaplansky I., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl

[19] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000, 446 pp. | MR | Zbl

[20] Kusraev A. G., “A Radon–Nikodým type theorem for orthosymmetric bilinear operators”, Positivity, 14:2 (2010), 225–238 | DOI | MR | Zbl

[21] Kusraev A. G., Boolean Valued Analysis Approach to Injective Banach Lattices, Preprint No 1, Southern Math. Inst. VSC RAS, Vladikavkaz, 2011, 28 pp. | MR

[22] Kluwer, Dordrecht, 1999 | MR | Zbl

[23] Kusraev A. G., Kutateladze S. S., Introduction to Boolean Valued Analysis, Nauka, Moscow, 2005, 526 pp. (in Russian) | MR | Zbl

[24] Kutateladze S. S., “Mathematics and Economics in the Legacy of Leonid Kantorovich”, Vladikavkaz Math. J., 14:1 (2011), 7–21 | MR

[25] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979, x+243 pp. | MR | Zbl

[26] Lotz H. P., “Extensions and liftings of positive linear mappings on Banach lattices”, Trans. Amer. Math. Soc., 211 (1975), 85–100 | DOI | MR | Zbl

[27] Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin etc., 1991, xvi+395 pp. | MR | Zbl

[28] Ozawa M., “Boolean valued interpretation of Hilbert space theory”, J. Math. Soc. Japan, 35:4 (1983), 609–627 | DOI | MR | Zbl

[29] Ozawa M., “A classification of type I $AW^*$-algebras and Boolean valued analysis”, J. Math. Soc. Japan, 36:4 (1984), 589–608 | DOI | MR | Zbl

[30] Ozawa M., “Boolean valued interpretation of Banach space theory and module structure of von Neumann algebras”, Nagoya Math. J., 117 (1990), 1–36 | MR | Zbl

[31] Szulga J., “$(p,r)$-convex functions on vector lattices”, Proc. Edinburg Math. Soc., 37:2 (1994), 207–226 | DOI | MR | Zbl

[32] Takeuti G., Two Applications of Logic to Mathematics, Princeton Univ. Press, Princeton, 1978, viii+137 pp. | MR | Zbl

[33] Takeuti G., “Boolean valued analysis”, Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Lecture Notes in Math., 753, Springer-Verlag, Berlin etc., 1979, 714–731 | DOI | MR

[34] Takeuti G., “Boolean completion and $m$-convergence”, Categorical Aspects of Topology and Analysis (Ottawa, Ont., 1980), Lecture Notes in Math., 915, Springer-Verlag, Berlin etc., 1982, 333–350 | DOI | MR

[35] Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Fizmatgiz, Moscow, 1961, 407 pp. (in Russian) | MR | Zbl