@article{VMJ_2012_14_1_a6,
author = {A. G. Kusraev},
title = {Kantorovich's principle in action: $AW^*$-modules and injective {Banach} lattices},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {67--74},
year = {2012},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a6/}
}
A. G. Kusraev. Kantorovich's principle in action: $AW^*$-modules and injective Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 1, pp. 67-74. http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a6/
[1] Abramovich Y. A., Aliprantis C. D., An Invitation to Operator Theory, Amer. Math. Soc., Providence, R.I., 2002, iv+530 pp. | MR
[2] Arendt W., “Factorization by lattice homomorphisms”, Math. Z., 185:4 (1984), 567–571 | DOI | MR | Zbl
[3] Bell J. L., Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York etc., 1985, xx+165 pp. | MR | Zbl
[4] Behrends E., $M$-Structure and Banach–Stone Theorem, Lecture Notes in Math., 736, Springer, Berlin etc., 1979 | MR | Zbl
[5] Buskes G., “Separably-injective Banach lattices are injective”, Proc. Roy. Irish Acad. Sect. A, 85:2 (1985), 185–186 | MR | Zbl
[6] Buskes G., Kusraev A. G., “Representation and extension of orthoregular bilinear operators”, Vladikavkaz Math. J., 9:1 (2007), 16–29 | MR
[7] Buskes G., de Pagter B., van Rooij A., “Functional calculus in Riesz spaces”, Indag. Math. (N.S.), 4:2 (1991), 423–436 | DOI | MR | Zbl
[8] Buskes G., van Rooij A., “Squares of Riesz spaces”, Rocky Mountain J. Math., 31:1 (2001), 45–56 | DOI | MR | Zbl
[9] Cartwright D. I., “Extension of positive operators between Banach lattices”, Memoirs Amer. Math. Soc., 164 (1975), 1–48 | MR
[10] Gordon E. I., “Real numbers in Boolean-valued models of set theory and $K$-spaces”, Dokl. Akad. Nauk SSSR, 237:4 (1977), 773–775 | MR | Zbl
[11] Gordon E. I., “$K$-spaces in Boolean-valued models of set theory”, Dokl. Akad. Nauk SSSR, 258:4 (1981), 777–780 | MR | Zbl
[12] Gordon E. I., “To the theorems of identity preservation in $K$-spaces”, Sibirsk. Mat. Zh., 23:5 (1982), 55–65 | MR | Zbl
[13] Harmand P., Werner D., Wener W., $M$-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math., 1547, Springer, Berlin etc., 1993, viii+384 pp. | MR | Zbl
[14] Haydon R., “Injective Banach lattices”, Math. Z., 156 (1977), 19–47 | DOI | MR | Zbl
[15] Ivanov V. V., Banach Topologies and Kolmogorov's Problem, Preprint No 257, Sobolev Inst. Math., Novosibirsk, 2011, 16 pp. (in Russian)
[16] Kantorovich L. V., “On semiordered linear spaces and their applications to the theory of linear operations”, Dokl. Akad. Nauk SSSR, 4:1–2 (1935), 11–14
[17] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Functional Analysis in Semiordered Spaces, Gostekhizdat, Moscow–Leningrad, 1950, 548 pp. (in Russian) | Zbl
[18] Kaplansky I., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl
[19] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000, 446 pp. | MR | Zbl
[20] Kusraev A. G., “A Radon–Nikodým type theorem for orthosymmetric bilinear operators”, Positivity, 14:2 (2010), 225–238 | DOI | MR | Zbl
[21] Kusraev A. G., Boolean Valued Analysis Approach to Injective Banach Lattices, Preprint No 1, Southern Math. Inst. VSC RAS, Vladikavkaz, 2011, 28 pp. | MR
[22] Kluwer, Dordrecht, 1999 | MR | Zbl
[23] Kusraev A. G., Kutateladze S. S., Introduction to Boolean Valued Analysis, Nauka, Moscow, 2005, 526 pp. (in Russian) | MR | Zbl
[24] Kutateladze S. S., “Mathematics and Economics in the Legacy of Leonid Kantorovich”, Vladikavkaz Math. J., 14:1 (2011), 7–21 | MR
[25] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979, x+243 pp. | MR | Zbl
[26] Lotz H. P., “Extensions and liftings of positive linear mappings on Banach lattices”, Trans. Amer. Math. Soc., 211 (1975), 85–100 | DOI | MR | Zbl
[27] Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin etc., 1991, xvi+395 pp. | MR | Zbl
[28] Ozawa M., “Boolean valued interpretation of Hilbert space theory”, J. Math. Soc. Japan, 35:4 (1983), 609–627 | DOI | MR | Zbl
[29] Ozawa M., “A classification of type I $AW^*$-algebras and Boolean valued analysis”, J. Math. Soc. Japan, 36:4 (1984), 589–608 | DOI | MR | Zbl
[30] Ozawa M., “Boolean valued interpretation of Banach space theory and module structure of von Neumann algebras”, Nagoya Math. J., 117 (1990), 1–36 | MR | Zbl
[31] Szulga J., “$(p,r)$-convex functions on vector lattices”, Proc. Edinburg Math. Soc., 37:2 (1994), 207–226 | DOI | MR | Zbl
[32] Takeuti G., Two Applications of Logic to Mathematics, Princeton Univ. Press, Princeton, 1978, viii+137 pp. | MR | Zbl
[33] Takeuti G., “Boolean valued analysis”, Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Lecture Notes in Math., 753, Springer-Verlag, Berlin etc., 1979, 714–731 | DOI | MR
[34] Takeuti G., “Boolean completion and $m$-convergence”, Categorical Aspects of Topology and Analysis (Ottawa, Ont., 1980), Lecture Notes in Math., 915, Springer-Verlag, Berlin etc., 1982, 333–350 | DOI | MR
[35] Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Fizmatgiz, Moscow, 1961, 407 pp. (in Russian) | MR | Zbl