An example of using $\Delta_1$ terms in Boolean valued analysis
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 1, pp. 47-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Syntactic tools related to $\Delta_1$ terms are demonstrated by application to Boolean valued analysis. As an example, the question is considered of what approaches to defining the field $\mathbb R$ of reals and what complete Boolean algebras $B$ provide the explicit inclusion $\mathbb R^\land\subset\mathbb R$ inside the Boolean valued universe $\mathbb V^{(B)}$.
@article{VMJ_2012_14_1_a4,
     author = {A. E. Gutman},
     title = {An example of using $\Delta_1$ terms in {Boolean} valued analysis},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {47--63},
     year = {2012},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a4/}
}
TY  - JOUR
AU  - A. E. Gutman
TI  - An example of using $\Delta_1$ terms in Boolean valued analysis
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 47
EP  - 63
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a4/
LA  - ru
ID  - VMJ_2012_14_1_a4
ER  - 
%0 Journal Article
%A A. E. Gutman
%T An example of using $\Delta_1$ terms in Boolean valued analysis
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 47-63
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a4/
%G ru
%F VMJ_2012_14_1_a4
A. E. Gutman. An example of using $\Delta_1$ terms in Boolean valued analysis. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/VMJ_2012_14_1_a4/

[1] Bulos Dzh., Dzheffri R., Vychislimost i logika, Mir, M., 1994, 396 pp.

[2] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Tr. In-ta matematiki SO RAN, 29, Izd-vo in-ta matematiki, Novosibirsk, 1995, 63–211 | MR

[3] Kantorovich L. V., “O poluuporyadochennykh lineinykh prostranstvakh i ikh prilozheniyakh v teorii lineinykh operatsii”, Dokl. AN SSSR, 4:1/2 (1935), 11–14

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR | Zbl

[5] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Funktsionalnyi analiz v poluuporyadochennykh prostranstvakh, Gostekhizdat, M.–L., 1950, 550 pp. | Zbl

[6] Kusraev A. G., Mazhoriruemye operatory, Nauka, M., 2003, 609 pp. | MR

[7] Kusraev A. G., Kutateladze S. S., Vvedenie v bulevoznachnyi analiz, Nauka, M., 2005, 256 pp. | MR | Zbl

[8] Sikorskii R., Bulevy algebry, Mir, M., 1969, 376 pp. | MR

[9] Bell J. L., Set Theory. Boolean-Valued Models and Independence Proofs, Clarendon Press, New York, 2005 | MR | Zbl

[10] Gutman A. E., “Locally one-dimensional K-spaces and $\sigma$-distributive Boolean algebras”, Siberian Adv. Math., 5:1 (1995), 42–48 | MR | Zbl

[11] Jech T., Set Theory, Springer-Verlag, Berlin etc., 2002 | MR

[12] Lévy A., A hierarchy of formulas in set theory, Mem. Amer. Math. Soc., 57, Amer. Math. Soc., Providence, R.I., 1965 | MR | Zbl

[13] Solovay R. M., Tennenbaum S., “Iterated Cohen extensions and Souslin's problem”, Annals of Math., 94:2 (1971), 201–245 | DOI | MR | Zbl