2-groups with given properties of finite subgroups
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 35-39
Voir la notice de l'article provenant de la source Math-Net.Ru
A local finiteness is proved of 2-groups, all of whose finite subgroups (a) are nilpotent of class 2 or (b) belong to a variety defined by the law $[x,y]^2=1$. Besides, it is proved that the order of the derived subgroup of a 2-group $G$ is at most 2 if the order of every conjugacy class of every finite subgroup of $G$ is at most 2.
@article{VMJ_2011_13_4_a3,
author = {D. V. Lytkina},
title = {2-groups with given properties of finite subgroups},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {35--39},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a3/}
}
D. V. Lytkina. 2-groups with given properties of finite subgroups. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 35-39. http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a3/