On coefficients of exponential series for analytic functions of polynomial growth
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 18-27
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article a criterion is obtained that the operator of the representation of analytic functions on a bounded convex domain $G$ of polynomial growth near the boundary of $G$ by exponential series, exponents of which are zeroes of a special entire function, has a continuous linear right inverse.
@article{VMJ_2011_13_4_a1,
author = {V. A. Varziev and S. N. Melikhov},
title = {On coefficients of exponential series for analytic functions of polynomial growth},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {18--27},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a1/}
}
TY - JOUR AU - V. A. Varziev AU - S. N. Melikhov TI - On coefficients of exponential series for analytic functions of polynomial growth JO - Vladikavkazskij matematičeskij žurnal PY - 2011 SP - 18 EP - 27 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a1/ LA - ru ID - VMJ_2011_13_4_a1 ER -
V. A. Varziev; S. N. Melikhov. On coefficients of exponential series for analytic functions of polynomial growth. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 18-27. http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a1/