On coefficients of exponential series for analytic functions of polynomial growth
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 18-27

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a criterion is obtained that the operator of the representation of analytic functions on a bounded convex domain $G$ of polynomial growth near the boundary of $G$ by exponential series, exponents of which are zeroes of a special entire function, has a continuous linear right inverse.
@article{VMJ_2011_13_4_a1,
     author = {V. A. Varziev and S. N. Melikhov},
     title = {On coefficients of exponential series for analytic functions of polynomial growth},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {18--27},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a1/}
}
TY  - JOUR
AU  - V. A. Varziev
AU  - S. N. Melikhov
TI  - On coefficients of exponential series for analytic functions of polynomial growth
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 18
EP  - 27
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a1/
LA  - ru
ID  - VMJ_2011_13_4_a1
ER  - 
%0 Journal Article
%A V. A. Varziev
%A S. N. Melikhov
%T On coefficients of exponential series for analytic functions of polynomial growth
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 18-27
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a1/
%G ru
%F VMJ_2011_13_4_a1
V. A. Varziev; S. N. Melikhov. On coefficients of exponential series for analytic functions of polynomial growth. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 18-27. http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a1/