Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 3-17
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a homogeneous convolution equation in the Beurling class of ultradifferentiable functions of mean type on the interval. It is obtained that in the space of its solutions there is an exponential-polynomial basis.
@article{VMJ_2011_13_4_a0,
author = {D. A. Abanina},
title = {Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {3--17},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a0/}
}
TY - JOUR AU - D. A. Abanina TI - Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions JO - Vladikavkazskij matematičeskij žurnal PY - 2011 SP - 3 EP - 17 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a0/ LA - ru ID - VMJ_2011_13_4_a0 ER -
%0 Journal Article %A D. A. Abanina %T Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions %J Vladikavkazskij matematičeskij žurnal %D 2011 %P 3-17 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a0/ %G ru %F VMJ_2011_13_4_a0
D. A. Abanina. Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a0/