Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a homogeneous convolution equation in the Beurling class of ultradifferentiable functions of mean type on the interval. It is obtained that in the space of its solutions there is an exponential-polynomial basis.
@article{VMJ_2011_13_4_a0,
     author = {D. A. Abanina},
     title = {Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a0/}
}
TY  - JOUR
AU  - D. A. Abanina
TI  - Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 3
EP  - 17
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a0/
LA  - ru
ID  - VMJ_2011_13_4_a0
ER  - 
%0 Journal Article
%A D. A. Abanina
%T Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 3-17
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a0/
%G ru
%F VMJ_2011_13_4_a0
D. A. Abanina. Exponential-polynomial basis for null spaces of convolution operators in classes of ultradifferentiable functions. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/VMJ_2011_13_4_a0/