A study of harmonic fluctuations hollow the cylinder with screw anisotropy on the basis of three-dimensional equations of elasticity theory
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 2, pp. 35-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Distribution of harmonious waves in a floor the cylinder with screw anisotropy are investigated on the basis of the three-dimensional theory of elasticity. The basic attention is given to studying axisymmetric fluctuations. The comparative analysis with the results obtained earlier on the basis of applied theories is carried out.
@article{VMJ_2011_13_2_a3,
     author = {I. A. Panfilov and Y. A. Ustinov},
     title = {A study of harmonic fluctuations hollow the cylinder with screw anisotropy on the basis of three-dimensional equations of elasticity theory},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {35--44},
     year = {2011},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a3/}
}
TY  - JOUR
AU  - I. A. Panfilov
AU  - Y. A. Ustinov
TI  - A study of harmonic fluctuations hollow the cylinder with screw anisotropy on the basis of three-dimensional equations of elasticity theory
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 35
EP  - 44
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a3/
LA  - ru
ID  - VMJ_2011_13_2_a3
ER  - 
%0 Journal Article
%A I. A. Panfilov
%A Y. A. Ustinov
%T A study of harmonic fluctuations hollow the cylinder with screw anisotropy on the basis of three-dimensional equations of elasticity theory
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 35-44
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a3/
%G ru
%F VMJ_2011_13_2_a3
I. A. Panfilov; Y. A. Ustinov. A study of harmonic fluctuations hollow the cylinder with screw anisotropy on the basis of three-dimensional equations of elasticity theory. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 2, pp. 35-44. http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a3/

[1] Kristensen R. M., Vvedenie v mekhaniku kompozitov, Mir, M., 1982, 334 pp.

[2] Pobedrya B. E., Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984, 335 pp. | Zbl

[3] Pedli T., Gidrodinamika krupnykh krovenosnykh sosudov, Mir, M., 1983, 400 pp.

[4] Purinya B. A., Kasyanov V. A., Biomekhanika krupnykh krovenosnykh sosudov, Znanie, Riga, 1980, 260 pp.

[5] Ustinov Yu. A., “Reshenie zadachi Sen-Venana dlya tsilindra s vintovoi anizotropiei”, Prikladnaya mat-ka i mekhanika, 67:1 (2003), 89–98 | Zbl

[6] Ustinov Yu. A., “Nekotorye zadachi dlya uprugikh tsilindricheskikh tel s vintovoi anizotropiei”, Uspekhi mekhaniki, 2003, no. 4, 37–62

[7] Ustinov Yu. A., Zadachi Sen-Venana dlya psevdotsilindrov, Nauka, M., 2003, 128 pp.

[8] Ustinov Yu. A., “Model vintovogo pulsovogo dvizheniya krovi v arterialnykh sosudakh”, Dokl. RAN, 398:3 (2004), 344–348

[9] Bogachenko S. E., Ustinov Yu. A., “Nekotorye osobennosti volnovykh protsessov v tsilindricheskoi obolochke s vintovoi anizotropiei”, Ekologicheskii vestn. nauch. tsentrov ChES, 2006, no. 1, 18–21

[10] Panfilov I. A., Ustinov Yu. A., “Sobstvennye chastoty i formy tsilindricheskoi obolochki s vintovoi anizotropiei”, Tr. XI mezhdunar. konf. “Sovremennye problemy mekhaniki sploshnoi sredy”, v. 2, Izd-vo OOO “TsVVR”, Rostov-na-Donu, 2007, 166–171

[11] Panfilov I. A., Ustinov Yu. A., “Otrazhenie odnorodnykh voln ot tortsa polubeskonechnoi tsilindricheskoi obolochki s vintovoi anizotropiei”, Tr. XII mezhdunar. konf. “Sovremennye problemy mekhaniki sploshnoi sredy”, v. 2, Izd-vo OOO “TsVVR”, Rostov-na-Donu, 2008, 152–156

[12] Panfilov I. A., Ustinov Yu. A., “Nekotorye dinamicheskie zadachi dlya tsilindricheskoi obolochki s vintovoi anizotropiei”, Izv. vuzov. Sev.-Kavk. region. Estestv. nauki, 2009, Spetsvypusk. Aktualnye problemy mekhaniki, 97–105

[13] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977, 415 pp. | MR | Zbl

[14] Goldenveizer A. N., Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 512 pp. | MR

[15] Getman I. P., Ustinov Yu. A., Matematicheskaya teoriya neregulyarnykh tverdykh volnovodov, Izd-vo RGU, Rostov-na-Donu, 1993, 144 pp.

[16] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Mir, M., 1962, 96 pp.

[17] Getman I. P., Ustinov Yu. A., “O metodakh rascheta kanatov. Zadacha rastyazheniya-krucheniya”, Prikladnaya mat-ka i mekhanika, 72:1 (2008), 81–90 | MR | Zbl

[18] Grinchenko V. T., Meleshko V. V., Garmonicheskie kolebaniya i volny v uprugikh telakh, Naukova dumka, Kiev, 1981, 283 pp. | MR | Zbl

[19] Mandelshtam L. I., Lektsii po optike, teorii otnositelnosti i kvantovoi mekhanike, Nauka, M., 1972, 437 pp. | MR

[20] Vorovich I. I., Babeshko V. A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1973, 320 pp. | MR | Zbl