@article{VMJ_2011_13_2_a2,
author = {H. Dutta},
title = {Some vector valued multiplier difference sequence spaces defined by a~sequence of {Orlicz} functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {26--34},
year = {2011},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/}
}
TY - JOUR AU - H. Dutta TI - Some vector valued multiplier difference sequence spaces defined by a sequence of Orlicz functions JO - Vladikavkazskij matematičeskij žurnal PY - 2011 SP - 26 EP - 34 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/ LA - en ID - VMJ_2011_13_2_a2 ER -
H. Dutta. Some vector valued multiplier difference sequence spaces defined by a sequence of Orlicz functions. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 2, pp. 26-34. http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/
[1] Dutta H., “Some results on 2-normed spaces”, Novi Sad J. Math. (to appear)
[2] Dutta H., “Characterization of certain matrix classes involving generalized difference summability spaces”, Appl. Sci. (APPS), 11 (2009), 60–67 | MR | Zbl
[3] Dutta H., “On some complete metric spaces of strongly summable sequences of fuzzy numbers”, Rend. Semin. Math., 68:1 (2010), 29–36 | MR | Zbl
[4] Et M., Colak R., “On generalized difference sequence spaces”, Soochow J. Math., 21 (1995), 377–386 | MR | Zbl
[5] Gähler S., “2-metrische Räume ind ihre topologische struktur”, Math. Nachr., 28 (1963), 115–148 | DOI | MR
[6] Gähler S., “Linear 2-normietre Räume”, Math. Nachr., 28 (1965), 1–43 | DOI | MR
[7] Gähler S., “Uber der uniformisierbarkeit 2-metrische Räume”, Math. Nachr., 28 (1965), 235–244 | DOI | MR | Zbl
[8] Goes G., Goes S., “Sequences of bounded variation and sequences of Fourier coefficients”, Math. Zeift., 118 (1970), 93–102 | DOI | MR | Zbl
[9] Ghosh D., Srivastava P. D., “On some vector valued sequence spaces defined using a modulus function”, Indian J. Pure Appl. Math., 30:8 (1999), 819–826 | MR | Zbl
[10] Gunawan H., Mashadi M., “On finite dimensional 2-normed spaces”, Soochow J. Math., 27:3 (2001), 321–329 | MR | Zbl
[11] Kizmaz H., “On certain sequence spaces”, Canad. Math. Bull., 24:2 (1981), 169–176 | DOI | MR | Zbl
[12] Lascarides C. G., “A study of certain sequece spaces of maddox and generalization of a theorem of Iyer”, Pacific J. Math., 38:2 (1971), 487–500 | DOI | MR | Zbl
[13] Lascarides C. G., Maddox I. J., “Matrix transformation between some classes of sequences”, Prov. Camb. Phil. Soc., 68 (1970), 99–104 | DOI | MR | Zbl
[14] Lindenstrauss J., Tzafriri L., “On Orlicz sequence spaces”, Israel J. Math., 10 (1971), 379–390 | DOI | MR | Zbl
[15] Maddox I. J., “Paranormed sequence spaces generated by infinite matrices”, Proc. Camb. Phil. Soc., 64 (1968), 335–340 | DOI | MR | Zbl
[16] Mursaleen, Khan M. A., Quamaruddin, “Difference sequence spaces defined by Orlicz functions”, Demonstratio Math., 32:1 (1999), 145–150 | MR | Zbl
[17] Nakano H., “Modular sequence space”, Proc. Japan Acad., 27 (1951), 508–512 | DOI | MR | Zbl
[18] Nanda S., “Some sequence spaces and almost convergence”, J. Austral. Math. Soc. Ser. A, 22 (1976), 446–455 | DOI | MR | Zbl
[19] Parasar S. D., Choudhary B., “Sequence spaces defined by Orlicz functions”, Indian J. Pure Appl. Math., 25:4 (1994), 419–428 | MR
[20] Simons S., “The sequence spaces $\ell(p_v)$ and $m(p_v)$”, Proc. London. Math. Soc., 15 (1965), 422–436 | DOI | MR | Zbl
[21] Tripathy B. C., “A class of difference sequences related to the $p$-normed space $\ell^p$”, Demonstratio Math., 36:4 (2003), 867–872 | MR | Zbl