Some vector valued multiplier difference sequence spaces defined by a sequence of Orlicz functions
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 2, pp. 26-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we introduce some new difference sequence spaces with a real 2-normed linear space as base space and which are defined using a sequence of Orlicz functions, a bounded sequence of positive real numbers and a sequence of non-zero reals as multiplier sequence. We show that these spaces are complete paranormed spaces when the base space is a 2-Banach space and investigate these spaces for solidity, symmetricity, convergence free, monotonicity and sequence algebra. Further we obtain some relation between these spaces as well as prove some inclusion results.
@article{VMJ_2011_13_2_a2,
     author = {H. Dutta},
     title = {Some vector valued multiplier difference sequence spaces defined by a~sequence of {Orlicz} functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {26--34},
     year = {2011},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/}
}
TY  - JOUR
AU  - H. Dutta
TI  - Some vector valued multiplier difference sequence spaces defined by a sequence of Orlicz functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 26
EP  - 34
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/
LA  - en
ID  - VMJ_2011_13_2_a2
ER  - 
%0 Journal Article
%A H. Dutta
%T Some vector valued multiplier difference sequence spaces defined by a sequence of Orlicz functions
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 26-34
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/
%G en
%F VMJ_2011_13_2_a2
H. Dutta. Some vector valued multiplier difference sequence spaces defined by a sequence of Orlicz functions. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 2, pp. 26-34. http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/

[1] Dutta H., “Some results on 2-normed spaces”, Novi Sad J. Math. (to appear)

[2] Dutta H., “Characterization of certain matrix classes involving generalized difference summability spaces”, Appl. Sci. (APPS), 11 (2009), 60–67 | MR | Zbl

[3] Dutta H., “On some complete metric spaces of strongly summable sequences of fuzzy numbers”, Rend. Semin. Math., 68:1 (2010), 29–36 | MR | Zbl

[4] Et M., Colak R., “On generalized difference sequence spaces”, Soochow J. Math., 21 (1995), 377–386 | MR | Zbl

[5] Gähler S., “2-metrische Räume ind ihre topologische struktur”, Math. Nachr., 28 (1963), 115–148 | DOI | MR

[6] Gähler S., “Linear 2-normietre Räume”, Math. Nachr., 28 (1965), 1–43 | DOI | MR

[7] Gähler S., “Uber der uniformisierbarkeit 2-metrische Räume”, Math. Nachr., 28 (1965), 235–244 | DOI | MR | Zbl

[8] Goes G., Goes S., “Sequences of bounded variation and sequences of Fourier coefficients”, Math. Zeift., 118 (1970), 93–102 | DOI | MR | Zbl

[9] Ghosh D., Srivastava P. D., “On some vector valued sequence spaces defined using a modulus function”, Indian J. Pure Appl. Math., 30:8 (1999), 819–826 | MR | Zbl

[10] Gunawan H., Mashadi M., “On finite dimensional 2-normed spaces”, Soochow J. Math., 27:3 (2001), 321–329 | MR | Zbl

[11] Kizmaz H., “On certain sequence spaces”, Canad. Math. Bull., 24:2 (1981), 169–176 | DOI | MR | Zbl

[12] Lascarides C. G., “A study of certain sequece spaces of maddox and generalization of a theorem of Iyer”, Pacific J. Math., 38:2 (1971), 487–500 | DOI | MR | Zbl

[13] Lascarides C. G., Maddox I. J., “Matrix transformation between some classes of sequences”, Prov. Camb. Phil. Soc., 68 (1970), 99–104 | DOI | MR | Zbl

[14] Lindenstrauss J., Tzafriri L., “On Orlicz sequence spaces”, Israel J. Math., 10 (1971), 379–390 | DOI | MR | Zbl

[15] Maddox I. J., “Paranormed sequence spaces generated by infinite matrices”, Proc. Camb. Phil. Soc., 64 (1968), 335–340 | DOI | MR | Zbl

[16] Mursaleen, Khan M. A., Quamaruddin, “Difference sequence spaces defined by Orlicz functions”, Demonstratio Math., 32:1 (1999), 145–150 | MR | Zbl

[17] Nakano H., “Modular sequence space”, Proc. Japan Acad., 27 (1951), 508–512 | DOI | MR | Zbl

[18] Nanda S., “Some sequence spaces and almost convergence”, J. Austral. Math. Soc. Ser. A, 22 (1976), 446–455 | DOI | MR | Zbl

[19] Parasar S. D., Choudhary B., “Sequence spaces defined by Orlicz functions”, Indian J. Pure Appl. Math., 25:4 (1994), 419–428 | MR

[20] Simons S., “The sequence spaces $\ell(p_v)$ and $m(p_v)$”, Proc. London. Math. Soc., 15 (1965), 422–436 | DOI | MR | Zbl

[21] Tripathy B. C., “A class of difference sequences related to the $p$-normed space $\ell^p$”, Demonstratio Math., 36:4 (2003), 867–872 | MR | Zbl