Some vector valued multiplier difference sequence spaces defined by a~sequence of Orlicz functions
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 2, pp. 26-34

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we introduce some new difference sequence spaces with a real 2-normed linear space as base space and which are defined using a sequence of Orlicz functions, a bounded sequence of positive real numbers and a sequence of non-zero reals as multiplier sequence. We show that these spaces are complete paranormed spaces when the base space is a 2-Banach space and investigate these spaces for solidity, symmetricity, convergence free, monotonicity and sequence algebra. Further we obtain some relation between these spaces as well as prove some inclusion results.
@article{VMJ_2011_13_2_a2,
     author = {H. Dutta},
     title = {Some vector valued multiplier difference sequence spaces defined by a~sequence of {Orlicz} functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {26--34},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/}
}
TY  - JOUR
AU  - H. Dutta
TI  - Some vector valued multiplier difference sequence spaces defined by a~sequence of Orlicz functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 26
EP  - 34
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/
LA  - en
ID  - VMJ_2011_13_2_a2
ER  - 
%0 Journal Article
%A H. Dutta
%T Some vector valued multiplier difference sequence spaces defined by a~sequence of Orlicz functions
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 26-34
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/
%G en
%F VMJ_2011_13_2_a2
H. Dutta. Some vector valued multiplier difference sequence spaces defined by a~sequence of Orlicz functions. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 2, pp. 26-34. http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a2/