Finite regular hyperbolic planes and nilpotent groups with 8~generators
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 2, pp. 15-25
Voir la notice de l'article provenant de la source Math-Net.Ru
Regular finite hyperbolic plane are obtained for nilpotent groups of step 2 and simple period. Four nonisomorphic $\langle3,4\rangle$-plane are constructed. These planes are not Desargues.
@article{VMJ_2011_13_2_a1,
author = {A. I. Dolgarew},
title = {Finite regular hyperbolic planes and nilpotent groups with 8~generators},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {15--25},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a1/}
}
A. I. Dolgarew. Finite regular hyperbolic planes and nilpotent groups with 8~generators. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 2, pp. 15-25. http://geodesic.mathdoc.fr/item/VMJ_2011_13_2_a1/