The numerical decision of one problem of dispersion with application of zero functions of Lezhandra
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 71-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A question of possibility of construction of approximate schemes with the given accuracy order for numerical solution of integral equations of dispersion theory is considered.
@article{VMJ_2011_13_1_a7,
     author = {Sh. S. Khubezhty},
     title = {The numerical decision of one problem of dispersion with application of zero functions of {Lezhandra}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {71--77},
     year = {2011},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a7/}
}
TY  - JOUR
AU  - Sh. S. Khubezhty
TI  - The numerical decision of one problem of dispersion with application of zero functions of Lezhandra
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 71
EP  - 77
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a7/
LA  - ru
ID  - VMJ_2011_13_1_a7
ER  - 
%0 Journal Article
%A Sh. S. Khubezhty
%T The numerical decision of one problem of dispersion with application of zero functions of Lezhandra
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 71-77
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a7/
%G ru
%F VMJ_2011_13_1_a7
Sh. S. Khubezhty. The numerical decision of one problem of dispersion with application of zero functions of Lezhandra. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 71-77. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a7/

[1] Sanikidze D. G., “Primenenie priblizhennykh formul dlya integralov s yadrom Koshi dlya chislennogo resheniya zadach rasseyaniya”, Tr. XIII mezhdunar. simpoziuma, MDOZMF, Kharkov–Kherson, 2007, 254–257

[2] Senikidze D. G., Khubezhty Sh. S., “O vychislitelnoi skheme povyshennoi tochnosti dlya resheniya odnogo klassa singulyarnykh integralnykh uravnenii”, Tr. XIV mezhdunar. simpoziuma, MDOZMF-2009, Ch. 1, Kharkov–Kherson, 2009, 164–167

[3] Braun Dzh. E., Dzhekson E. D., Nuklon-nuklonnye vzaimodeistviya, Atomizdat, M., 1979, 248 pp.

[4] Teilor Dzh., Teoriya rasseyaniya, Mir, M., 1975, 566 pp.

[5] Hartel M. I., Tabakin F., “Nuclear saturation and smoothness of nucleon-nucleon potentials”, Nuclear Physics A (Amsterdam), 158 (1970), 1–42

[6] Sanikidze J., “On the Problem of quadrature approximation of one singular integral operator”, Comput. Methods in Appl. Math., 1:2 (2001), 199–210 | MR | Zbl

[7] Sanikidze D. G., “O chislennom reshenii odnogo klassa singulyarnykh integralnykh uravnenii na beskonechnom intervale”, Dif. uravneniya, 41:9 (2005), 1280–1285 | MR | Zbl

[8] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[9] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO “Yanus”, M., 1995, 520 pp. | MR | Zbl

[10] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M.–L., 1962, 708 pp. | MR