On the expansions of analytic functions on convex locally closed sets in exponential series
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 44-58
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $Q$ be a bounded, convex, locally closed subset of $\mathbb C^N$ with nonempty interior. For $N>1$ sufficient conditions are obtained that an operator of the representation of analytic functions on $Q$ by exponential series has a continuous linear right inverse. For $N=1$ the criterions for the existence of a continuous linear right inverse for the representation operator are proved.
@article{VMJ_2011_13_1_a5,
author = {S. N. Melikhov and S. Momm},
title = {On the expansions of analytic functions on convex locally closed sets in exponential series},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {44--58},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a5/}
}
TY - JOUR AU - S. N. Melikhov AU - S. Momm TI - On the expansions of analytic functions on convex locally closed sets in exponential series JO - Vladikavkazskij matematičeskij žurnal PY - 2011 SP - 44 EP - 58 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a5/ LA - en ID - VMJ_2011_13_1_a5 ER -
%0 Journal Article %A S. N. Melikhov %A S. Momm %T On the expansions of analytic functions on convex locally closed sets in exponential series %J Vladikavkazskij matematičeskij žurnal %D 2011 %P 44-58 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a5/ %G en %F VMJ_2011_13_1_a5
S. N. Melikhov; S. Momm. On the expansions of analytic functions on convex locally closed sets in exponential series. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 44-58. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a5/