On the expansions of analytic functions on convex locally closed sets in exponential series
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 44-58

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q$ be a bounded, convex, locally closed subset of $\mathbb C^N$ with nonempty interior. For $N>1$ sufficient conditions are obtained that an operator of the representation of analytic functions on $Q$ by exponential series has a continuous linear right inverse. For $N=1$ the criterions for the existence of a continuous linear right inverse for the representation operator are proved.
@article{VMJ_2011_13_1_a5,
     author = {S. N. Melikhov and S. Momm},
     title = {On the expansions of analytic functions on convex locally closed sets in exponential series},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {44--58},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a5/}
}
TY  - JOUR
AU  - S. N. Melikhov
AU  - S. Momm
TI  - On the expansions of analytic functions on convex locally closed sets in exponential series
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 44
EP  - 58
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a5/
LA  - en
ID  - VMJ_2011_13_1_a5
ER  - 
%0 Journal Article
%A S. N. Melikhov
%A S. Momm
%T On the expansions of analytic functions on convex locally closed sets in exponential series
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 44-58
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a5/
%G en
%F VMJ_2011_13_1_a5
S. N. Melikhov; S. Momm. On the expansions of analytic functions on convex locally closed sets in exponential series. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 44-58. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a5/