A Beckenbach–Dresher type inequality in uniformly complete $f$-algebras
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 38-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general form Beckenbach–Dresher inequality in uniformly complete $f$-algebras is given.
@article{VMJ_2011_13_1_a4,
     author = {A. G. Kusraev},
     title = {A {Beckenbach{\textendash}Dresher} type inequality in uniformly complete $f$-algebras},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {38--43},
     year = {2011},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a4/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - A Beckenbach–Dresher type inequality in uniformly complete $f$-algebras
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 38
EP  - 43
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a4/
LA  - en
ID  - VMJ_2011_13_1_a4
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T A Beckenbach–Dresher type inequality in uniformly complete $f$-algebras
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 38-43
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a4/
%G en
%F VMJ_2011_13_1_a4
A. G. Kusraev. A Beckenbach–Dresher type inequality in uniformly complete $f$-algebras. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 38-43. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a4/

[1] Aliprantis C. D., Burkinshaw O., Positive operators, Acad. Press Inc., London etc., 1985, xvi+367 pp. | MR | Zbl

[2] Beckenbach E. F., Bellman R., Inequalities, Springer, Berlin, 1983 | MR | Zbl

[3] Buskes G., de Pagter B., van Rooij A., “Functional calculus on Riesz spaces”, Indag. Math., 4:2 (1991), 423–436 | DOI | MR | Zbl

[4] Kusraev A. G., Homogeneous functional calculus on vector lattices, Preprint No 1, Southern Math. Inst. VSC RAS, Vladikavkaz, 2008, 34 pp. | MR

[5] Kusraev A. G., “Functional calculus and Minkowski duality on vector lattices”, Vladikavkaz Math. J., 11:2 (2009), 31–42 | MR

[6] Kusraev A. G., Kutateladze S. S., Subdifferentials: Theory and applications, Kluwer Academic Publ., Dordrecht, 1995, ix+398 pp. | MR | Zbl

[7] Kusraev A. G., “Inequalities in vector lattices”, Studies on Mathematical Analysis, Differential Equation, and their Applications, Review of Science: The South of Russia, eds. Korobeĭnik Yu. F., Kusraev A. G., SMI VSC RAS, Vladikavkaz, 2010, 82–96

[8] Kusraev A. G., Kutateladze S. S., “Envelopes and inequalities in vector lattices” (to appear)

[9] Mitrinović D. S., Pečarić J. E., Fink A. M., Classical and new inequalities in analysis, Kluwer, Dordrecht, 1993, xvii+740 pp. | MR | Zbl

[10] Pečarić J. E., Proschan F., Tong Y. L., Convex functions, partial orderings, and statistical application, Academic Press, Boston a. o., 1992, xiii+469 pp. | MR

[11] Peetre J., Persson L.-E., “A general Beckenbach's inequality with applications”, Function Spaces, Differential Operators and Nonlinear Analysis, Pitman Res. Notes Math. Ser., 211, 1989, 125–139 | MR | Zbl

[12] Persson L.-E., “Generalizations of some classical inequalities and their applications”, Nonlinear Analysis, Function Spaces and Applications, eds. Krbec M., Kufner A., Opic B., Rákosník J., Teubner, Leipzig, 1990, 127–148 | DOI | MR | Zbl

[13] Varošanec S., “A generalized Beckenbach–Dresher inequality”, Banach J. Math. Anal., 4:1 (2010), 13–20 | DOI | MR | Zbl