On weak bases in functional spaces
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 21-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a strictly webbed Montel space $E$ with complete separable $E'_\beta$ (strong dual of $E$), we show that a weak bases in $E$ is Schauder basis with equicontinuons coefficientive functionals. This result is applied to bases in spaces of holomorphic functions. In particular, from it the absolutenes of all bases in some classes of nonmetrizable nuclear functional spaces follows.
@article{VMJ_2011_13_1_a2,
     author = {V. P. Kondakov},
     title = {On weak bases in functional spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {21--30},
     year = {2011},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a2/}
}
TY  - JOUR
AU  - V. P. Kondakov
TI  - On weak bases in functional spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 21
EP  - 30
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a2/
LA  - ru
ID  - VMJ_2011_13_1_a2
ER  - 
%0 Journal Article
%A V. P. Kondakov
%T On weak bases in functional spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 21-30
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a2/
%G ru
%F VMJ_2011_13_1_a2
V. P. Kondakov. On weak bases in functional spaces. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a2/

[1] De Wilde M., “On the equivalence of weak and Schauder bases”, Proc. Internat. Coll on Nuclear Spaces and Ideals in Operator Algebras (Warsaw, 1969), Studia Math., 38, 1970, 457 pp.

[2] Dineen S., “Analytic functionals on fully nuclear spaces”, Studia Math., 73 (1982), 11–32 | MR | Zbl

[3] Kondakov V. P., “O differentsiruemosti otobrazhenii i stroenii prostranstv golomorfnykh funktsii na prostranstvakh chislovykh posledovatelnostei”, Vladikavk. mat. zhurn., 9:2 (2007), 9–21 | MR

[4] McArthur C. W., “Developments in Schauder basis theory”, Bull. of the Amer. Math. Soc., 78:6 (1972), 877–908 | DOI | MR | Zbl

[5] Köthe G., Topological vector spaces. II, Springer-Verlag, Berlin, 1979 | MR | Zbl

[6] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971, 359 pp. | MR

[7] Dragilev M. M., “O pravilnykh bazisakh v yadernykh prostranstvakh”, Mat. sb., 68(110):2 (1965), 153–173 | MR | Zbl

[8] Kondakov V. P., Tri osnovnykh printsipa lineinogo funktsionalnogo analiza, ikh obobscheniya i prilozheniya, VNTs RAN, Vladikavkaz, 2007, 208 pp.

[9] Kömura Y., “Some examples on linear topological spaces”, Math. Ann., 153 (1964), 150–162 | DOI | MR | Zbl

[10] Dragilev M. M., “O regulyarnoi skhodimosti bazisnykh razlozhenii analiticheskikh funktsii”, Nauch. dokl. vyssh. shkoly. Fiz.-mat. nauki, 1958, no. 4, 27–32 | MR | Zbl

[11] Boland P. J., Dineen S., “Holomorphic functions on fully nuclear spaces”, Bull. Soc. Math. France, 106 (1978), 311–336 | MR | Zbl

[12] Dineen S., Timoney R. M., “Absolute bases, tensor products and a theorem of Bohr”, Studia Math., 94 (1989), 227–234 | MR | Zbl