Riemann–Hilbert boundary value problems in $BMO$ classes for generalized analytic functions
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 13-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical Riemann–Hilbert boundary value problems for generalized analytic functions are under consideration. We search the solution in $BMO$ class under assumption that the coefficient of the boundary condition belongs to the set of pointwise multipliers of $BMO$. Earlier in [2] the author constructed examples when the problem for golomorphic functions with non-negative index in the such natural setting has no solution in $BMOA$. Sufficient conditions on the coefficient are given when we have usual pattern of solvability in $BMO$ class.
@article{VMJ_2011_13_1_a1,
     author = {S. B. Klimentov},
     title = {Riemann{\textendash}Hilbert boundary value problems in $BMO$ classes for generalized analytic functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {13--20},
     year = {2011},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a1/}
}
TY  - JOUR
AU  - S. B. Klimentov
TI  - Riemann–Hilbert boundary value problems in $BMO$ classes for generalized analytic functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 13
EP  - 20
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a1/
LA  - ru
ID  - VMJ_2011_13_1_a1
ER  - 
%0 Journal Article
%A S. B. Klimentov
%T Riemann–Hilbert boundary value problems in $BMO$ classes for generalized analytic functions
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 13-20
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a1/
%G ru
%F VMJ_2011_13_1_a1
S. B. Klimentov. Riemann–Hilbert boundary value problems in $BMO$ classes for generalized analytic functions. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a1/

[1] Klimentov S. B., “Klassy $BMO$ obobschennykh analiticheskikh funktsii”, Vladikavk. mat. zhurn., 8:1 (2006), 27–39 | MR | Zbl

[2] Klimentov S. B., “Kraevye zadachi Rimana i Gilberta v klasse $BMO$ dlya analiticheskikh funktsii”, Vladikavk. mat. zhurn., 12:4 (2010), 28–38 | MR | Zbl

[3] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959, 628 pp. | MR | Zbl

[4] Klimentov S. B., “Klassy Khardi obobschennykh analiticheskikh funktsii”, Izv. vuzov. Sev.-Kav. region. Estestv. nauki, 2003, no. 3, 6–10 | Zbl

[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl

[6] Janson S., “On functions with conditions on the mean oscillation”, Ark. Math., 14:2 (1976), 189–196 | DOI | MR | Zbl

[7] Stegenga D. A., “Bounded Toeplitz operators on $H^1$ and applications of the duality between $H^1$ and the functions of bounded mean oscillation”, American J. of Math., 98:3 (1976), 573–589 | DOI | MR | Zbl

[8] Mazya V. G., Shaposhnikova T. O., Multiplikatory v prostranstvakh differentsiruemykh funktsii, Izd-vo Leningradskogo un-ta, L., 1986, 404 pp. | MR | Zbl

[9] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl

[10] Klimentov S. B., “Predstavleniya vtorogo roda dlya klassov $LMO$ obobschennykh analiticheskikh funktsii”, Issledovaniya po differentsialnym uravneniyami i matematicheskomu modelirovaniyu, eds. S. B. Klimentov, E. S. Kamenetskii, VNTs RAN i RSO-A, Vladikavkaz, 2009, 156 pp.

[11] Peetre J., “On convolution operators leaving $L^{p,\lambda}$ spaces invariant”, Ann. Mat. Pura Appl., 72:4 (1966), 295–304 | MR | Zbl

[12] Bramanti M., Brandolini L., “Estimates of $BMO$ type for singular integrals on spaces of homogeneous type and applications to hypoelliptic pdes”, Rev. Mat. Iberoamericana, 21:2 (2005), 511–556 | DOI | MR | Zbl