Riemann--Hilbert boundary value problems in $BMO$ classes for generalized analytic functions
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 13-20
Voir la notice de l'article provenant de la source Math-Net.Ru
The classical Riemann–Hilbert boundary value problems for generalized analytic functions are under consideration. We search the solution in $BMO$ class under assumption that the coefficient of the boundary condition belongs to the set of pointwise multipliers of $BMO$. Earlier in [2] the author constructed examples when the problem for golomorphic functions with non-negative index in the such natural setting has no solution in $BMOA$. Sufficient conditions on the coefficient are given when we have usual pattern of solvability in $BMO$ class.
@article{VMJ_2011_13_1_a1, author = {S. B. Klimentov}, title = {Riemann--Hilbert boundary value problems in $BMO$ classes for generalized analytic functions}, journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal}, pages = {13--20}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a1/} }
TY - JOUR AU - S. B. Klimentov TI - Riemann--Hilbert boundary value problems in $BMO$ classes for generalized analytic functions JO - Vladikavkazskij matematičeskij žurnal PY - 2011 SP - 13 EP - 20 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a1/ LA - ru ID - VMJ_2011_13_1_a1 ER -
S. B. Klimentov. Riemann--Hilbert boundary value problems in $BMO$ classes for generalized analytic functions. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a1/