Local one-dimensional scheme for the third boundary value problem for the heat equation
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the third boundary value problem for the heat equation with variable coefficients. By the method of energy inequalities, we find a priori estimate for difference problem. Stability and convergence of local one-dimensional schemes for the considered equation are proved.
@article{VMJ_2011_13_1_a0,
author = {A. K. Bazzaev},
title = {Local one-dimensional scheme for the third boundary value problem for the heat equation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {3--12},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/}
}
TY - JOUR AU - A. K. Bazzaev TI - Local one-dimensional scheme for the third boundary value problem for the heat equation JO - Vladikavkazskij matematičeskij žurnal PY - 2011 SP - 3 EP - 12 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/ LA - ru ID - VMJ_2011_13_1_a0 ER -
A. K. Bazzaev. Local one-dimensional scheme for the third boundary value problem for the heat equation. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/