@article{VMJ_2011_13_1_a0,
author = {A. K. Bazzaev},
title = {Local one-dimensional scheme for the third boundary value problem for the heat equation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {3--12},
year = {2011},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/}
}
A. K. Bazzaev. Local one-dimensional scheme for the third boundary value problem for the heat equation. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/
[1] Fryazinov I. V., “O raznostnoi approksimatsii granichnykh uslovii dlya tretei kraevoi zadachi”, Zhurn. vychislit. mat. i mat. fiz., 4 (1964), 1106–1112
[2] Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya nagruzhennogo uravneniya teploprovodnosti s kraevymi usloviyami III roda”, Zhurn. vychislit. mat. i mat. fiz., 49:7 (2009), 1223–1231 | MR | Zbl
[3] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zhurn. vychislit. mat. i mat. fiz., 48:10 (2008), 1878–1887 | MR | Zbl
[4] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 416 pp. | Zbl
[5] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR
[6] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 2001, 320 pp. | MR
[7] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.