Local one-dimensional scheme for the third boundary value problem for the heat equation
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the third boundary value problem for the heat equation with variable coefficients. By the method of energy inequalities, we find a priori estimate for difference problem. Stability and convergence of local one-dimensional schemes for the considered equation are proved.
@article{VMJ_2011_13_1_a0,
     author = {A. K. Bazzaev},
     title = {Local one-dimensional scheme for the third boundary value problem for the heat equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/}
}
TY  - JOUR
AU  - A. K. Bazzaev
TI  - Local one-dimensional scheme for the third boundary value problem for the heat equation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 3
EP  - 12
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/
LA  - ru
ID  - VMJ_2011_13_1_a0
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%T Local one-dimensional scheme for the third boundary value problem for the heat equation
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 3-12
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/
%G ru
%F VMJ_2011_13_1_a0
A. K. Bazzaev. Local one-dimensional scheme for the third boundary value problem for the heat equation. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/