Local one-dimensional scheme for the third boundary value problem for the heat equation
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the third boundary value problem for the heat equation with variable coefficients. By the method of energy inequalities, we find a priori estimate for difference problem. Stability and convergence of local one-dimensional schemes for the considered equation are proved.
@article{VMJ_2011_13_1_a0,
     author = {A. K. Bazzaev},
     title = {Local one-dimensional scheme for the third boundary value problem for the heat equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--12},
     year = {2011},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/}
}
TY  - JOUR
AU  - A. K. Bazzaev
TI  - Local one-dimensional scheme for the third boundary value problem for the heat equation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 3
EP  - 12
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/
LA  - ru
ID  - VMJ_2011_13_1_a0
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%T Local one-dimensional scheme for the third boundary value problem for the heat equation
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 3-12
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/
%G ru
%F VMJ_2011_13_1_a0
A. K. Bazzaev. Local one-dimensional scheme for the third boundary value problem for the heat equation. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/VMJ_2011_13_1_a0/

[1] Fryazinov I. V., “O raznostnoi approksimatsii granichnykh uslovii dlya tretei kraevoi zadachi”, Zhurn. vychislit. mat. i mat. fiz., 4 (1964), 1106–1112

[2] Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya nagruzhennogo uravneniya teploprovodnosti s kraevymi usloviyami III roda”, Zhurn. vychislit. mat. i mat. fiz., 49:7 (2009), 1223–1231 | MR | Zbl

[3] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zhurn. vychislit. mat. i mat. fiz., 48:10 (2008), 1878–1887 | MR | Zbl

[4] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 416 pp. | Zbl

[5] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR

[6] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 2001, 320 pp. | MR

[7] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.