Some stability results for Picard iterative process in uniform space
Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 4, pp. 67-72

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove some stability results for Picard iteration in uniform space by introducing the concept of an $M_e$-distance as well as using some contractive conditions. Our results generalize, extend and improve some earlier results.
@article{VMJ_2010_12_4_a9,
     author = {M. O. Olatinwo},
     title = {Some stability results for {Picard} iterative process in uniform space},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a9/}
}
TY  - JOUR
AU  - M. O. Olatinwo
TI  - Some stability results for Picard iterative process in uniform space
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2010
SP  - 67
EP  - 72
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a9/
LA  - en
ID  - VMJ_2010_12_4_a9
ER  - 
%0 Journal Article
%A M. O. Olatinwo
%T Some stability results for Picard iterative process in uniform space
%J Vladikavkazskij matematičeskij žurnal
%D 2010
%P 67-72
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a9/
%G en
%F VMJ_2010_12_4_a9
M. O. Olatinwo. Some stability results for Picard iterative process in uniform space. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 4, pp. 67-72. http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a9/