@article{VMJ_2010_12_4_a9,
author = {M. O. Olatinwo},
title = {Some stability results for {Picard} iterative process in uniform space},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {67--72},
year = {2010},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a9/}
}
M. O. Olatinwo. Some stability results for Picard iterative process in uniform space. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 4, pp. 67-72. http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a9/
[1] Aamri M., Moutawakil D. E., “Common fixed point theorems for $E$-contractive or $E$-expansive maps in uniform spaces”, Acta Math. Acad. Paedagogicae Nyiregyhaziensis, 20 (2004), 83–91 | MR | Zbl
[2] Banach S., “Sur les operations dans les ensembles abstraits et leur applications aux equations integrales”, Fund. Math., 3 (1922), 133–181 | Zbl
[3] Berinde V., “On the stability of some fixed point procedures”, Bul. Stiint. Univ. Baia Mare. Ser. B Matematica–Informatica, 18:1 (2002), 7–14 | MR | Zbl
[4] Berinde V., Iterative approximation of fixed points, Springer-Verlag, Berlin, 2007, 325 pp. | MR | Zbl
[5] Bourbaki N., Elements de mathematique. Fas. II. Livre III: Topologie generale. Chapter 1: Structures topologiques. Chapter 2: Structures uniformes, Quatrieme Edition. Actualites Scientifiques et Industrielles, 1142, Hermann, Paris, 1965 | MR
[6] Ciric Lj. B., “A Generalization of Banach's contraction principle”, Proc. Amer. Math. Soc., 45 (1974), 267–273 | DOI | MR | Zbl
[7] Ciric Lj. B., Some recent results in metrical fixed point theory, University of Belgrade, Beograd, 2003 | Zbl
[8] Harder A. M., Hicks T. L., “Stability results for fixed point iteration procedures”, Math. Japonica, 33:5 (1988), 693–706 | MR | Zbl
[9] Imoru C. O., Olatinwo M. O., “On the stability of Picard and Mann iteration processes”, Carp. J. Math., 19:2 (2003), 155–160 | MR | Zbl
[10] Imoru C. O., Olatinwo M. O., Owojori O. O., “On the stability results for Picard and Mann iteration procedures”, J. Appl. Funct. Differ. Equ., 1:1 (2006), 71–80 | MR | Zbl
[11] Olatinwo M. O., Owojori O. O., Imoru C. O., “Some stability results on Krasnoselskij and Ishikawa fixed point iteration procedures”, J. Math. Stat., 2:1 (2006), 360–362 | DOI | MR | Zbl
[12] Olatinwo M. O., Owojori O. O., Imoru C. O., “Some stability results for fixed point iteration processes”, Aus. J. Math. Anal. Appl., 3:2 (2006), 1–7 | MR | Zbl
[13] Olatinwo M. O., “Some stability and strong convergence results for the Jungck–Ishikawa iteration process”, Creative Math. and Inf., 17 (2008), 33–42 | MR | Zbl
[14] Olatinwo M. O., “Some stability results for two hybrid fixed point iterative algorithms of Kirk–Ishikawa and Kirk–Mann type”, J. Adv. Math. Studies, 1:1–2 (2008), 87–96 | MR | Zbl
[15] Olatinwo M. O., “Some unifying results on stability and strong convergence for some new iteration processes”, Acta Math. Academiae Paedagogicae Nyiregyhaziensis, 25:1 (2009), 105–118 | MR | Zbl
[16] Olatinwo M. O., “An extension of some common fixed point theorems for selfmappings in uniform space”, J. of Concrete and Appl. Math., 7:2 (2009), 179–186 | MR | Zbl
[17] Jachymski J. R., “An extension of A. Ostrowski's theorem on the round-off stability of iterations”, Aequ. Math., 53 (1997), 242–253 | DOI | MR | Zbl
[18] Osilike M. O., “Some stability results for fixed point iteration procedures”, J. Nigerian Math. Soc., 14–15 (1995), 17–29 | MR
[19] Osilike M. O., Udomene A., “Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings”, Indian J. Pure Appl. Math., 30:12 (1999), 1229–1234 | MR | Zbl
[20] Ostrowski A. M., “The round-off stability of iterations”, Z. Angew. Math. Mech., 47 (1967), 77–81 | DOI | MR | Zbl
[21] Rhoades B. E., “Fixed point theorems and stability results for fixed point iteration procedures”, Indian J. Pure Appl. Math., 21:1 (1990), 1–9 | MR | Zbl
[22] Rhoades B. E., “Some fixed point iteration procedures”, Int. J. Math. Math. Sci., 14:1 (1991), 1–16 | DOI | MR | Zbl
[23] Rhoades B. E., “Fixed point theorems and stability results for fixed point iteration procedures, II”, Indian J. Pure Appl. Math., 24:11 (1993), 691–703 | MR | Zbl
[24] Rhoades B. E., “A comparison of various definitions of contractive mappings”, Trans. Amer. Math. Soc., 226 (1977), 257–290 | DOI | MR | Zbl
[25] Rus I. A., Generalized contractions and applications, Cluj Univ. Press, Cluj Napoca, 2001 | MR
[26] Zamfirescu T., “Fix point theorems in metric spaces”, Arch. Math., 23 (1972), 292–298 | DOI | MR | Zbl
[27] Zeidler E., Nonlinear functional analysis and its applications, fixed-point theorems, v. I, Springer-Verlag, New York, 1986 | MR | Zbl