Nets associated with the elementary nets
Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 4, pp. 39-43

Voir la notice de l'article provenant de la source Math-Net.Ru

For an elementary net (i.e. a net without diagonal) $\sigma=(\sigma_{ij})$ of additive subgroups $\sigma_{ij}$, $i\ne j$, of a commutative ring $R$ with 1 two nets are constructed: the net $\omega_\sigma$ associated with $\sigma$ and the net $\Omega^\sigma$ associated with the elementary group $E(\sigma)$, and (on the off-diagonal positions) we have $\omega_\sigma\subseteq\sigma\subseteq\Omega^\sigma$.
@article{VMJ_2010_12_4_a5,
     author = {V. A. Koibaev},
     title = {Nets associated with the elementary nets},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {39--43},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a5/}
}
TY  - JOUR
AU  - V. A. Koibaev
TI  - Nets associated with the elementary nets
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2010
SP  - 39
EP  - 43
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a5/
LA  - ru
ID  - VMJ_2010_12_4_a5
ER  - 
%0 Journal Article
%A V. A. Koibaev
%T Nets associated with the elementary nets
%J Vladikavkazskij matematičeskij žurnal
%D 2010
%P 39-43
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a5/
%G ru
%F VMJ_2010_12_4_a5
V. A. Koibaev. Nets associated with the elementary nets. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 4, pp. 39-43. http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a5/