Riemann and Hilbert boundary value problems in $BMO$ classes for holomorphic functions
Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 4, pp. 28-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical Riemann and Hilbert boundary value problems for analytic functions are under consideration. We search the solution in $BMOA$ class under assumption that the coefficient of the boundary condition belongs to the set of pointwise multipliers of $BMO$. We constract examples when the problem with non-negative index in the such natural setting has not solution in $BMOA$. Sufficient conditions on the coefficient are given when we have usual pattern of solvability in $BMOA$ class.
@article{VMJ_2010_12_4_a4,
     author = {S. B. Klimentov},
     title = {Riemann and {Hilbert} boundary value problems in $BMO$ classes for holomorphic functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {28--38},
     year = {2010},
     volume = {12},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a4/}
}
TY  - JOUR
AU  - S. B. Klimentov
TI  - Riemann and Hilbert boundary value problems in $BMO$ classes for holomorphic functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2010
SP  - 28
EP  - 38
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a4/
LA  - ru
ID  - VMJ_2010_12_4_a4
ER  - 
%0 Journal Article
%A S. B. Klimentov
%T Riemann and Hilbert boundary value problems in $BMO$ classes for holomorphic functions
%J Vladikavkazskij matematičeskij žurnal
%D 2010
%P 28-38
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a4/
%G ru
%F VMJ_2010_12_4_a4
S. B. Klimentov. Riemann and Hilbert boundary value problems in $BMO$ classes for holomorphic functions. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 4, pp. 28-38. http://geodesic.mathdoc.fr/item/VMJ_2010_12_4_a4/

[1] Klimentov S. B., “Klassy $BMO$ obobschennykh analiticheskikh funktsii”, Vladikavk. mat. zhurn., 8:1 (2006), 27–39 | MR | Zbl

[2] Klimentov S. B., “Stokhasticheskaya kraevaya zadacha Rimana–Gilberta v konformnykh martingalnykh klassakh $H_p$ i $BMO$”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki, 2004, no. 3, 6–12 | Zbl

[3] Simonenko I. B., “Kraevaya zadacha Rimana s nepreryvnym koeffitsientom”, Dokl. AN SSSR, 124:2 (1959), 278–281 | MR | Zbl

[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl

[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl

[6] Janson S., “On functions with conditions on the mean oscillation”, Ark. Math., 14:2 (1976), 189–196 | DOI | MR | Zbl

[7] Stegenga D. A., “Bounded Toeplitz operators on $H^1$ and applications of the duality between $H^1$ and the functions of bounded mean oscillation”, American J. of Math., 98:3 (1976), 573–589 | DOI | MR | Zbl

[8] Mazya V. G., Shaposhnikova T. O., Multiplikatory v prostranstvakh differentsiruemykh funktsii, Izd-vo Leningradskogo un-ta, L., 1986, 404 pp. | MR | Zbl

[9] Peetre J., “On convolution operators leaving $L^{p,\lambda}$ spaces invariant”, Ann. Mat. Pura Appl., 72:4 (1966), 295–304 | MR | Zbl

[10] Bramanti M., Brandolini L., “Estimates of $BMO$ type for singular integrals on spaces of homogeneous type and applications to hypoelliptic pdes”, Rev. Mat. Iberoamericana, 21:2 (2005), 511–556 | DOI | MR | Zbl

[11] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975, 296 pp. | MR