On correlation of two solution classes of Navier--Stokes equation
Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 3, pp. 56-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an initial boundary value problem for Navier–Stokes equation with mass power polinomial depend on unknown (velocity). We introduce for it the definitions of solution and generalized solution and we derive the conditions, under with a generalized solution is a solution.
@article{VMJ_2010_12_3_a5,
     author = {V. B. Levenshtam},
     title = {On correlation of two solution classes of {Navier--Stokes} equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--66},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_3_a5/}
}
TY  - JOUR
AU  - V. B. Levenshtam
TI  - On correlation of two solution classes of Navier--Stokes equation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2010
SP  - 56
EP  - 66
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2010_12_3_a5/
LA  - ru
ID  - VMJ_2010_12_3_a5
ER  - 
%0 Journal Article
%A V. B. Levenshtam
%T On correlation of two solution classes of Navier--Stokes equation
%J Vladikavkazskij matematičeskij žurnal
%D 2010
%P 56-66
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2010_12_3_a5/
%G ru
%F VMJ_2010_12_3_a5
V. B. Levenshtam. On correlation of two solution classes of Navier--Stokes equation. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 3, pp. 56-66. http://geodesic.mathdoc.fr/item/VMJ_2010_12_3_a5/