On automorphisms of strongly regular graph with parameters $(396,135,30,54)$
Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 3, pp. 30-40
Cet article a éte moissonné depuis la source Math-Net.Ru
We found the possible orders and the structures of subgraphs of the fixed points of automorphisms of strongly regular graph with parameters $(396,135,30,54)$. These results can be used to study automorphisms of strongly regular graph with parameters $(640,243,66,108)$ (in such a graph the second neighborhood of vertices are strongly regular with parameters $(396,135,30,54)$).
@article{VMJ_2010_12_3_a2,
author = {M. M. Isakova and A. A. Makhnev},
title = {On automorphisms of strongly regular graph with parameters $(396,135,30,54)$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {30--40},
year = {2010},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_3_a2/}
}
TY - JOUR AU - M. M. Isakova AU - A. A. Makhnev TI - On automorphisms of strongly regular graph with parameters $(396,135,30,54)$ JO - Vladikavkazskij matematičeskij žurnal PY - 2010 SP - 30 EP - 40 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2010_12_3_a2/ LA - ru ID - VMJ_2010_12_3_a2 ER -
M. M. Isakova; A. A. Makhnev. On automorphisms of strongly regular graph with parameters $(396,135,30,54)$. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 3, pp. 30-40. http://geodesic.mathdoc.fr/item/VMJ_2010_12_3_a2/
[1] Cameron P., Van Lint J., Designs, graphs, codes and their links, London Math. Soc. Student Texts, 22, Cambridge Univ. Press, Cambridge, 1981, 240 pp. | MR | Zbl
[2] Macay M., Siran J., “Search for properties of the missing Moore graph”, Linear Algebra and its Appl., 432 (2009), 2381–2398 | MR
[3] Zhurtov A. Kh., Makhnev A. A., Nirova M. S., “Ob avtomorfizmakh 4-izoregulyarnykh grafov”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 78–86
[4] Makhnev A. A., “Chastichnye geometrii i ikh rasshireniya”, Uspekhi mat. nauk, 54:5 (1999), 25–76 | DOI | MR | Zbl