@article{VMJ_2010_12_2_a3,
author = {D. Yu. Kuznetsov},
title = {Tetrational as special function},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {31--45},
year = {2010},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a3/}
}
D. Yu. Kuznetsov. Tetrational as special function. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 2, pp. 31-45. http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a3/
[1] Kneser H., “Reelle analytische Lösungen der Gleichung $\varphi(\varphi(x))=\mathrm e^x$ und verwandter Funktionalgleichungen”, J. für die reine und angewandte Math., 187 (1950), 56–67 | DOI | MR
[2] Szekeres G., “Regular iteration of real and complex functions”, Acta Math., 100 (1958), 203–258 | DOI | MR | Zbl
[3] Szekeres G., “Fractional iteration of exponentially growing function”, J. Austral. Math. Soc., 2 (1961), 301–320 | DOI | MR
[4] Knoebel R. A., “Exponential reiterated”, Amer. Math. Monthly, 88 (1981), 235–252 | DOI | MR | Zbl
[5] Bromer N., “Superexponentiation”, Math. Mag., 60:3 (1987), 169–174 | MR
[6] Walker P., “Infinitely differentiable generalized logarithmic and exponential functions”, Math. of Comp., 196 (1991), 723–733 | DOI | MR | Zbl
[7] Walker P., “On the solutions of an Abelian functional equation”, J. Math. Anal. and Appl., 155:1 (1991), 93–110 | DOI | MR | Zbl
[8] Kouznetsov D., “Solution of $F(z+1)=\exp(F(z))$ in complex $z$-plane”, Math. of Comp., 78 (2009), 1647–1670 | DOI | MR | Zbl
[9] Kouznetsov D., Trappmann H., “Portrait of the four regular super-exponentials to base sqrt(2)”, Math. of Computation, 79 (2010), 1727–1756 | DOI | MR | Zbl
[10] Trappmann H., Kouznetsov D., Uniqueness of analytic Abel functions in absence of a real fixed point, 2010 (to appear); Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2009uniabel.pdf
[11] Kuznetsov D., Trappmann G., “Superfunktsii i kvadratnyi koren iz faktoriala”, Vestn. Moskovskogo universiteta. Cer. 3. Fizika i Astronomiya, 65:1 (2010), 8–14 | DOI | MR
[12] Kuznetsov D., “Kontinualnoe obobschenie logosticheskogo otobrazheniya”, Vest. Moskovskogo universiteta. Ser. 3. Fizika i astronomiya, 65:2 (2010), 24–31 | DOI
[13] Kod dlya ris. 4: http://en.citizendium.org/wiki/TetrationPolynomial25power.jpg/code
[14] Kod dlya ris. 5: http://en.citizendium.org/wiki/TetrationApproLP100.jpg/code
[15] Kod dlya ris. 6: http://en.citizendium.org/wiki/TetrationTailorExpansion3ipower25.jpg/code
[16] Kod dlya ris. 9: http://en.citizendium.org/wiki/TetrationDerivativesReal.jpg/code
[17] Kod dlya ris. 10: http://en.citizendium.org/wiki/SLOGappro50.jpg/code