Tetrational as special function
Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 2, pp. 31-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Holomorphic tetrational (superexponential) to the base $e$ and its inverse function (arctetrational) are approximated with elementary functions.
@article{VMJ_2010_12_2_a3,
     author = {D. Yu. Kuznetsov},
     title = {Tetrational as special function},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {31--45},
     year = {2010},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a3/}
}
TY  - JOUR
AU  - D. Yu. Kuznetsov
TI  - Tetrational as special function
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2010
SP  - 31
EP  - 45
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a3/
LA  - ru
ID  - VMJ_2010_12_2_a3
ER  - 
%0 Journal Article
%A D. Yu. Kuznetsov
%T Tetrational as special function
%J Vladikavkazskij matematičeskij žurnal
%D 2010
%P 31-45
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a3/
%G ru
%F VMJ_2010_12_2_a3
D. Yu. Kuznetsov. Tetrational as special function. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 2, pp. 31-45. http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a3/

[1] Kneser H., “Reelle analytische Lösungen der Gleichung $\varphi(\varphi(x))=\mathrm e^x$ und verwandter Funktionalgleichungen”, J. für die reine und angewandte Math., 187 (1950), 56–67 | DOI | MR

[2] Szekeres G., “Regular iteration of real and complex functions”, Acta Math., 100 (1958), 203–258 | DOI | MR | Zbl

[3] Szekeres G., “Fractional iteration of exponentially growing function”, J. Austral. Math. Soc., 2 (1961), 301–320 | DOI | MR

[4] Knoebel R. A., “Exponential reiterated”, Amer. Math. Monthly, 88 (1981), 235–252 | DOI | MR | Zbl

[5] Bromer N., “Superexponentiation”, Math. Mag., 60:3 (1987), 169–174 | MR

[6] Walker P., “Infinitely differentiable generalized logarithmic and exponential functions”, Math. of Comp., 196 (1991), 723–733 | DOI | MR | Zbl

[7] Walker P., “On the solutions of an Abelian functional equation”, J. Math. Anal. and Appl., 155:1 (1991), 93–110 | DOI | MR | Zbl

[8] Kouznetsov D., “Solution of $F(z+1)=\exp(F(z))$ in complex $z$-plane”, Math. of Comp., 78 (2009), 1647–1670 | DOI | MR | Zbl

[9] Kouznetsov D., Trappmann H., “Portrait of the four regular super-exponentials to base sqrt(2)”, Math. of Computation, 79 (2010), 1727–1756 | DOI | MR | Zbl

[10] Trappmann H., Kouznetsov D., Uniqueness of analytic Abel functions in absence of a real fixed point, 2010 (to appear); Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2009uniabel.pdf

[11] Kuznetsov D., Trappmann G., “Superfunktsii i kvadratnyi koren iz faktoriala”, Vestn. Moskovskogo universiteta. Cer. 3. Fizika i Astronomiya, 65:1 (2010), 8–14 | DOI | MR

[12] Kuznetsov D., “Kontinualnoe obobschenie logosticheskogo otobrazheniya”, Vest. Moskovskogo universiteta. Ser. 3. Fizika i astronomiya, 65:2 (2010), 24–31 | DOI

[13] Kod dlya ris. 4: http://en.citizendium.org/wiki/TetrationPolynomial25power.jpg/code

[14] Kod dlya ris. 5: http://en.citizendium.org/wiki/TetrationApproLP100.jpg/code

[15] Kod dlya ris. 6: http://en.citizendium.org/wiki/TetrationTailorExpansion3ipower25.jpg/code

[16] Kod dlya ris. 9: http://en.citizendium.org/wiki/TetrationDerivativesReal.jpg/code

[17] Kod dlya ris. 10: http://en.citizendium.org/wiki/SLOGappro50.jpg/code