On the right inverse operators which are defined by Eidelheit sequences
Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 2, pp. 24-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we prove criterion and separately sufficient conditions under which the operator which is defined by Eidelheit sequence has or has not continuous linear right inverse. Also we apply the obtained results for solution of the problem of topologically complementability of ideals in algebras of holomorphic functions.
@article{VMJ_2010_12_2_a2,
     author = {O. A. Ivanova and S. N. Melikhov},
     title = {On the right inverse operators which are defined by {Eidelheit} sequences},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {24--30},
     year = {2010},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a2/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
TI  - On the right inverse operators which are defined by Eidelheit sequences
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2010
SP  - 24
EP  - 30
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a2/
LA  - ru
ID  - VMJ_2010_12_2_a2
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%T On the right inverse operators which are defined by Eidelheit sequences
%J Vladikavkazskij matematičeskij žurnal
%D 2010
%P 24-30
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a2/
%G ru
%F VMJ_2010_12_2_a2
O. A. Ivanova; S. N. Melikhov. On the right inverse operators which are defined by Eidelheit sequences. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 2, pp. 24-30. http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a2/

[1] Vogt D., “On two problems of Mityagin”, Math. Nachr., 141 (1989), 13–25 | DOI | MR | Zbl

[2] Mityagin B. S., “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, Uspekhi mat. nauk, 16:4 (1961), 63–132 | MR | Zbl

[3] Vogt D., “Kernels of Eidelhelt matrices and related topics”, Doga Tr. J. Math., 10 (1986), 232–256 | MR | Zbl

[4] Berenstein C. A., Gay R., Complex Variables. An Introduction, Springer-Verlag, New York, 1991, 650 pp. | MR | Zbl

[5] Robertson A. P., Robertson V. D., Topologicheskie vektornye prostranstva, Mir, M., 1967, 257 pp.

[6] Burbaki N., Topologicheskie vektornye prostranstva, Izd-vo inostr. lit-ry, M., 1959, 410 pp.

[7] Borel E., “Sur quelques points de la theorie des fonctions”, Ann. Sci. Norm. Sup., 12:3 (1895), 9–55 | MR | Zbl