On the right inverse operators which are defined by Eidelheit sequences
Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 2, pp. 24-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we prove criterion and separately sufficient conditions under which the operator which is defined by Eidelheit sequence has or has not continuous linear right inverse. Also we apply the obtained results for solution of the problem of topologically complementability of ideals in algebras of holomorphic functions.
@article{VMJ_2010_12_2_a2,
author = {O. A. Ivanova and S. N. Melikhov},
title = {On the right inverse operators which are defined by {Eidelheit} sequences},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {24--30},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a2/}
}
TY - JOUR AU - O. A. Ivanova AU - S. N. Melikhov TI - On the right inverse operators which are defined by Eidelheit sequences JO - Vladikavkazskij matematičeskij žurnal PY - 2010 SP - 24 EP - 30 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a2/ LA - ru ID - VMJ_2010_12_2_a2 ER -
O. A. Ivanova; S. N. Melikhov. On the right inverse operators which are defined by Eidelheit sequences. Vladikavkazskij matematičeskij žurnal, Tome 12 (2010) no. 2, pp. 24-30. http://geodesic.mathdoc.fr/item/VMJ_2010_12_2_a2/