On some properties of extensions of commutative unital rings
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 4, pp. 7-10
Cet article a éte moissonné depuis la source Math-Net.Ru
We find necessary and sufficient conditions for the ring $R[\alpha]$ to be either a field or a domain whenever $R$ is a commutative ring with 1 and $\alpha$ is an algebraic element over $R$. This continues the studies started by Nachev (Compt. Rend. Acad. Bulg. Sci., 2004) and (Commun. Alg., 2005) as well as their generalization due to Mihovski (Compt. Rend. Acad. Bulg. Sci., 2005).
@article{VMJ_2009_11_4_a1,
author = {P. V. Danchev},
title = {On some properties of extensions of commutative unital rings},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {7--10},
year = {2009},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_4_a1/}
}
P. V. Danchev. On some properties of extensions of commutative unital rings. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 4, pp. 7-10. http://geodesic.mathdoc.fr/item/VMJ_2009_11_4_a1/
[1] Lambek J., Rings and Modules, Mir, Moscow, 1971 (In Russian) | MR | Zbl
[2] Lang S., Algebra, Mir, Moscow, 1968 (In Russian) | Zbl
[3] Mihovski S., “Resultants and discriminants of polynomials over commutative rings”, Compt. Rend. Acad. Bulg. Sci., 8:59 (2006), 799–804 | MR | Zbl
[4] Mollov T., Nachev N., “Unit groups of commutative group rings”, Compt. Rend. Acad. Bulg. Sci., 5:57 (2004), 9–12 | MR | Zbl
[5] Nachev N., “Nilpotent elements and idempotents in commutative rings”, Compt. Rend. Acad. Bulg. Sci., 5:57 (2004), 5–8 | MR | Zbl
[6] Nachev N., “Nilpotent elements and idempotents in commutative group rings”, Comm. Algebra, 10:33 (2005), 3631–3637 | DOI | MR | Zbl