On some properties of extensions of commutative unital rings
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 4, pp. 7-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find necessary and sufficient conditions for the ring $R[\alpha]$ to be either a field or a domain whenever $R$ is a commutative ring with 1 and $\alpha$ is an algebraic element over $R$. This continues the studies started by Nachev (Compt. Rend. Acad. Bulg. Sci., 2004) and (Commun. Alg., 2005) as well as their generalization due to Mihovski (Compt. Rend. Acad. Bulg. Sci., 2005).
@article{VMJ_2009_11_4_a1,
     author = {P. V. Danchev},
     title = {On some properties of extensions of commutative unital rings},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {7--10},
     year = {2009},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_4_a1/}
}
TY  - JOUR
AU  - P. V. Danchev
TI  - On some properties of extensions of commutative unital rings
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2009
SP  - 7
EP  - 10
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2009_11_4_a1/
LA  - en
ID  - VMJ_2009_11_4_a1
ER  - 
%0 Journal Article
%A P. V. Danchev
%T On some properties of extensions of commutative unital rings
%J Vladikavkazskij matematičeskij žurnal
%D 2009
%P 7-10
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2009_11_4_a1/
%G en
%F VMJ_2009_11_4_a1
P. V. Danchev. On some properties of extensions of commutative unital rings. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 4, pp. 7-10. http://geodesic.mathdoc.fr/item/VMJ_2009_11_4_a1/

[1] Lambek J., Rings and Modules, Mir, Moscow, 1971 (In Russian) | MR | Zbl

[2] Lang S., Algebra, Mir, Moscow, 1968 (In Russian) | Zbl

[3] Mihovski S., “Resultants and discriminants of polynomials over commutative rings”, Compt. Rend. Acad. Bulg. Sci., 8:59 (2006), 799–804 | MR | Zbl

[4] Mollov T., Nachev N., “Unit groups of commutative group rings”, Compt. Rend. Acad. Bulg. Sci., 5:57 (2004), 9–12 | MR | Zbl

[5] Nachev N., “Nilpotent elements and idempotents in commutative rings”, Compt. Rend. Acad. Bulg. Sci., 5:57 (2004), 5–8 | MR | Zbl

[6] Nachev N., “Nilpotent elements and idempotents in commutative group rings”, Comm. Algebra, 10:33 (2005), 3631–3637 | DOI | MR | Zbl