Homogeneous functions of regular linear and bilinear operators
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 3, pp. 38-43
Cet article a éte moissonné depuis la source Math-Net.Ru
Using envelope representations explicit formulae for computing $\widehat{\varphi}(T_1,\dots,T_N)$ for any finite sequence of regular linear or bilinear operators $T_1,\dots,T_N$ on vector lattices are derived.
@article{VMJ_2009_11_3_a5,
author = {A. G. Kusraev},
title = {Homogeneous functions of regular linear and bilinear operators},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {38--43},
year = {2009},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_3_a5/}
}
A. G. Kusraev. Homogeneous functions of regular linear and bilinear operators. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 3, pp. 38-43. http://geodesic.mathdoc.fr/item/VMJ_2009_11_3_a5/
[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, N. Y., 1985, 367 pp. | MR | Zbl
[2] Bukhvalov A. V., “Nonlinear majorization of linear operators”, Dokl. Acad Nauk SSSR, 298:1 (1988), 14–17 | MR | Zbl
[3] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000, 446 pp. | MR | Zbl
[4] Kusraev A. G., Homogeneous Functional Calculus on Vector Lattices, Preprint No 1, IAMI VSC RAS, Vladikavkaz, 2008, 34 pp.
[5] Kusraev A. G., “Functional calculus and Minkowski duality on vector lattices”, Vladikavkaz Math. J., 11:2 (2009), 31–42 | MR
[6] Kusraev A. G., Tabuev S. N., “On Disjointness Preserving Bilinear Operators”, Vladikavkaz Math. J., 6:1 (2004), 58–70 | MR | Zbl