Homogeneous functions of regular linear and bilinear operators
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 3, pp. 38-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using envelope representations explicit formulae for computing $\widehat{\varphi}(T_1,\dots,T_N)$ for any finite sequence of regular linear or bilinear operators $T_1,\dots,T_N$ on vector lattices are derived.
@article{VMJ_2009_11_3_a5,
     author = {A. G. Kusraev},
     title = {Homogeneous functions of regular linear and bilinear operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {38--43},
     year = {2009},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_3_a5/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - Homogeneous functions of regular linear and bilinear operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2009
SP  - 38
EP  - 43
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2009_11_3_a5/
LA  - en
ID  - VMJ_2009_11_3_a5
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T Homogeneous functions of regular linear and bilinear operators
%J Vladikavkazskij matematičeskij žurnal
%D 2009
%P 38-43
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2009_11_3_a5/
%G en
%F VMJ_2009_11_3_a5
A. G. Kusraev. Homogeneous functions of regular linear and bilinear operators. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 3, pp. 38-43. http://geodesic.mathdoc.fr/item/VMJ_2009_11_3_a5/

[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, N. Y., 1985, 367 pp. | MR | Zbl

[2] Bukhvalov A. V., “Nonlinear majorization of linear operators”, Dokl. Acad Nauk SSSR, 298:1 (1988), 14–17 | MR | Zbl

[3] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000, 446 pp. | MR | Zbl

[4] Kusraev A. G., Homogeneous Functional Calculus on Vector Lattices, Preprint No 1, IAMI VSC RAS, Vladikavkaz, 2008, 34 pp.

[5] Kusraev A. G., “Functional calculus and Minkowski duality on vector lattices”, Vladikavkaz Math. J., 11:2 (2009), 31–42 | MR

[6] Kusraev A. G., Tabuev S. N., “On Disjointness Preserving Bilinear Operators”, Vladikavkaz Math. J., 6:1 (2004), 58–70 | MR | Zbl