Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 3, pp. 8-9
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that each weakly $\aleph_1$-separable quasi-complete abelian $p$-group is bounded, thus extending recent results of ours in (Vladikavkaz Math. J., 2007 and 2008).
@article{VMJ_2009_11_3_a1,
author = {P. V. Danchev},
title = {Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {8--9},
year = {2009},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_3_a1/}
}
P. V. Danchev. Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 3, pp. 8-9. http://geodesic.mathdoc.fr/item/VMJ_2009_11_3_a1/
[1] Danchev P. V., “A note on weakly $\aleph_1$-separable $p$-groups”, Vladikavkaz Math. J., 9:1 (2007), 30–37 | MR
[2] Danchev P. V., “Quasi-complete Q-groups are bounded”, Vladikavkaz Math. J., 10:1 (2008), 24–26 | MR
[3] Danchev P. V., “Generalized Dieudonné and Hill criteria”, Portugaliae Math., 65:1 (2008), 121–142 | DOI | MR | Zbl
[4] Fuchs L., Infinite Abelian Groups, v. I; II, Mir, Moscow, 1974 (In Russian) ; 1977 | MR | Zbl
[5] Kulikov L. Y., “On the theory of abelian groups of arbitrary cardinality”, Mat. Sb., 16:2 (1945), 129–162 (In Russian) | MR | Zbl
[6] Megibben C. K., “$\omega_1$-separable $p$-groups”, Abelian Group Theory (Oberwolfach, 1985), Gordon and Breach, New York, 1987, 117–136 | MR