Banach lattices with topologically full centre
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 50-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

After some general background discussion on the notion of a topologically full centre in a Banach lattice, we study two problems in which it has featured. In 1988 Orhon showed that if the centre is topologically full then it is also a maximal abelian algebra of bounded operators and asked if the converse is true. We give a short proof of his result and a counterexample to the converse. After noting that every non scalar central operator has a hyperinvariant band, we show that any hyperinvariant subspace must be an order ideal, provided the centre is topologically full and conclude with a counterexample to this in a general vector lattice setting.
@article{VMJ_2009_11_2_a7,
     author = {A. W. Wickstead},
     title = {Banach lattices with topologically full centre},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {50--60},
     year = {2009},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a7/}
}
TY  - JOUR
AU  - A. W. Wickstead
TI  - Banach lattices with topologically full centre
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2009
SP  - 50
EP  - 60
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a7/
LA  - en
ID  - VMJ_2009_11_2_a7
ER  - 
%0 Journal Article
%A A. W. Wickstead
%T Banach lattices with topologically full centre
%J Vladikavkazskij matematičeskij žurnal
%D 2009
%P 50-60
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a7/
%G en
%F VMJ_2009_11_2_a7
A. W. Wickstead. Banach lattices with topologically full centre. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 50-60. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a7/

[1] Abramovich Y. A., Aliprantis C. D., Burkinshaw O., Wickstead A. W., “A characterization of compact-friendly multiplication operators”, Indag. Math. (N.S.), 10:2 (1999), 161–171 | DOI | MR | Zbl

[2] Abramovič Ju. A., Veksler A. I., Koldunov A. V., “Operators that preserve disjunction”, Dokl. Akad. Nauk SSSR, 248:5 (1979), 1033–1036 (In Russian) | MR | Zbl

[3] Alpay Ş., Orhon M., Characterisation of Riesz spaces with topologically full centre, Preprint (to appear)

[4] Alpay {Ş}., Turan B., “On the commutant of the ideal centre”, Note Mat., 18:1 (1998), 63–69 | MR | Zbl

[5] Davies E. B., “The Choquet theory and representation of ordered Banach spaces”, Illinois J. Math., 13 (1969), 176–187 | MR | Zbl

[6] Goullet de Rugy A., “La structure idéale des $M$-espaces”, J. Math. Pures Appl., 51:9 (1972), 331–373 | MR | Zbl

[7] Hart D. R., Disjointness preserving operators, Ph. D. Thesis, California Institute of Technology, Pasadena, 1983 | MR

[8] Huang S. Zh., “Each hyperinvariant subspace for a multiplication operator is spectral”, Proc. Amer. Math. Soc., 106:4 (1989), 1057–1061 | DOI | MR | Zbl

[9] Leader S., “Separation and approximation in topological vector lattices”, Canad. J. Math., 11 (1959), 286–296 | DOI | MR | Zbl

[10] Lotz H. P., Über das spektrum positiver operatoren, Dr. Rer. Nat. Thesis, Eberhard-Karls-Universität Tübingen, 1967

[11] Luxemburg W. A. J., Some aspects of the theory of Riesz spaces, University of Arkansas Lecture Notes in Math., 4, The University of Arkansas, Fayetteville, 1979, iv+227 pp. | MR | Zbl

[12] Meyer M., “Richesses du centre d'un espace vectoriel réticulé”, Math. Ann., 236:2 (1978), 147–169 | DOI | MR | Zbl

[13] Meyer M., Richness and density in the centre of a Riesz space, Preprint, 1983 (to appear)

[14] Meyer-Nieberg P., Banach lattices, Universitext, Springer-Verlag, Berlin, 1991, xvi+395 pp. | DOI | MR | Zbl

[15] Nagel R. J., “Darstellung von Verbandsoperatoren auf Banachverbänden”, Rev. Acad. Ci. Zaragoza, 27:2 (1972), 281–288 | MR | Zbl

[16] Orhon M., “On the Hahn–Banach theorem for modules over $C(S)$”, J. London Math. Soc., 1:1 (1969), 363–368 | DOI | MR | Zbl

[17] Orhon M., “Boolean algebras of projections on Banach spaces”, J. Karadeniz Tech. Univ. Fac. Arts Sci. Ser. Math.-Phys., 11 (1988), 21–32 | MR | Zbl

[18] Orhon M., The ideal center of the dual of a Banach lattice, Technische Univ. Darmstadt preprint No 1182, 1988 | MR

[19] Schaefer H. H., Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, 215, Springer-Verlag, New York, 1974, xi+376 pp. | MR | Zbl

[20] Vincent-Smith G., “The Hahn–Banach theorem for modules”, Proc. London Math. Soc., 17 (1967), 72–90 | DOI | MR | Zbl

[21] Wickstead A. W., “The structure space of a Banach lattice. II”, Proc. Roy. Irish Acad. Sect. A, 77:9 (1977), 105–111 | MR | Zbl

[22] Wickstead A. W., “Extremal structure of cones of operators”, Quart. J. Math. Oxford. Ser. 2, 32:126 (1981), 239–253 | DOI | MR | Zbl

[23] Wickstead A. W., “Banach lattices with trivial centre”, Proc. Roy. Irish Acad. Sect. A, 88:1 (1988), 71–83 | MR

[24] Wils W., “The ideal center of partially ordered vector spaces”, Acta Math., 127 (1971), 41–77 | DOI | MR | Zbl

[25] Zaanen A. C., “Examples of orthomorphisms”, J. Approximation Theory, 13, Collection of articles dedicated to G. G. Lorentz on the occasion of his sixty-fifth birthday (1975), 192–204 | DOI | MR | Zbl