The order continuous dual of the regular integral operators on~$L^p$
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 46-49

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give two descriptions of the order continuous dual of the Banach lattics of regular integral operators on $L^p$. The first description is in terms of a Calderon space, while the second one in terms of the ideal generated by the finite rank operators.
@article{VMJ_2009_11_2_a6,
     author = {Anton R. Schep},
     title = {The order continuous dual of the regular integral operators on~$L^p$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {46--49},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a6/}
}
TY  - JOUR
AU  - Anton R. Schep
TI  - The order continuous dual of the regular integral operators on~$L^p$
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2009
SP  - 46
EP  - 49
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a6/
LA  - en
ID  - VMJ_2009_11_2_a6
ER  - 
%0 Journal Article
%A Anton R. Schep
%T The order continuous dual of the regular integral operators on~$L^p$
%J Vladikavkazskij matematičeskij žurnal
%D 2009
%P 46-49
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a6/
%G en
%F VMJ_2009_11_2_a6
Anton R. Schep. The order continuous dual of the regular integral operators on~$L^p$. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 46-49. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a6/