The order continuous dual of the regular integral operators on $L^p$
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 46-49
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we give two descriptions of the order continuous dual of the Banach lattics of regular integral operators on $L^p$. The first description is in terms of a Calderon space, while the second one in terms of the ideal generated by the finite rank operators.
@article{VMJ_2009_11_2_a6,
author = {Anton R. Schep},
title = {The order continuous dual of the regular integral operators on~$L^p$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {46--49},
year = {2009},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a6/}
}
Anton R. Schep. The order continuous dual of the regular integral operators on $L^p$. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 46-49. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a6/
[1] Fremlin D. H., “Tensor products of Banach lattices”, Math. Ann., 211 (1974), 87–106 | DOI | MR | Zbl
[2] Schep A. R., “Factorization of positive multilinear maps”, Illinois J. Math., 28:4 (1984), 579–591 | MR | Zbl
[3] Schep A. R., “Products of Cesaro convergent sequences with applications to convex solid sets and integral operators”, Proc. Amer. Math. Soc., 137:2 (2009), 579–584 | DOI | MR | Zbl
[4] Zaanen A. C., Riesz Spaces, v. II, North-Holland Mathematical Library, 30, North-Holland, Amsterdam etc., 1983, 720 pp. | MR | Zbl