@article{VMJ_2009_11_2_a5,
author = {V. G. Troitsky},
title = {When are the nonstandard hulls of normed lattices discrete or continuous?},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {43--45},
year = {2009},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a5/}
}
V. G. Troitsky. When are the nonstandard hulls of normed lattices discrete or continuous?. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 43-45. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a5/
[1] Aliprantis C. D., Burkinshaw O., Locally solid Riesz spaces with applications to economics, Math. Surveys and Monographs, 105, 2 ed., Amer. Math. Soc., Providence (R.I.), 2003, 344 pp. | DOI | MR | Zbl
[2] Emel'yanov È. Yu., “Infinitesimals in vector lattices”, Nonstandard analysis and vector lattices, Math. Appl., 525, Kluwer, Dordrecht, 2000, 161–230 | MR
[3] Luxemburg W. A. J., Zaanen A. C., Riesz spaces, v. 1, North-Holland Publishing Co, Amsterdam–London, 1971 | MR | Zbl
[4] Troitsky V. G., “Measures on non-compactness of operators on Banach lattices”, Positivity, 8:2 (2004), 165–178 | DOI | MR | Zbl
[5] Wnuk W., Wiatrowski B., “When are ultrapowers of normed lattices discrete or continuous?”, Positivity IV—theory and applications, Tech. Univ. Dresden, Dresden, 2006, 173–182 | MR
[6] Wolff M. P. H., “An introduction to nonstandard functional analysis”, Nonstandard analysis (Edinburgh, 1996), Kluwer Acad. Publ., Dordrecht, 1997, 121–151 | DOI | MR | Zbl