Functional calculus and Minkowski duality on vector lattices
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 31-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper extends homogeneous functional calculus on vector lattices. It is shown that the function of elements of a relatively uniformly complete vector lattice can naturally be defined if the positively homogeneous function is defined on some conic set and is continuous on some closed convex subcone. An interplay between Minkowski duality and homogeneous functional calculus leads to the envelope representation of abstract convex elements generated by the linear hull of a finite collection in a uniformly complete vector lattice.
@article{VMJ_2009_11_2_a4,
     author = {A. G. Kusraev},
     title = {Functional calculus and {Minkowski} duality on vector lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {31--42},
     year = {2009},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a4/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - Functional calculus and Minkowski duality on vector lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2009
SP  - 31
EP  - 42
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a4/
LA  - en
ID  - VMJ_2009_11_2_a4
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T Functional calculus and Minkowski duality on vector lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2009
%P 31-42
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a4/
%G en
%F VMJ_2009_11_2_a4
A. G. Kusraev. Functional calculus and Minkowski duality on vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 31-42. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a4/

[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press inc., London etc., 1985, xvi+367 pp. | MR | Zbl

[2] Bukhvalov A. V., “Nonlinear majorization of linear operators”, Dokl. Acad Nauk SSSR, 298:1 (1988), 14–17 | MR | Zbl

[3] Buskes G., de Pagter B., van Rooij A., “Functional calculus on Riesz spaces”, Indag. Math. (N.S.), 4:2 (1991), 423–436 | DOI | MR | Zbl

[4] Buskes G., van Rooij A., “Squares of Riesz spaces”, Rocky Mountain J. Math., 31:1 (2001), 45–56 | DOI | MR | Zbl

[5] Fremlin D. H., “Tensor product of Archimedean vector lattices”, Amer. J. Math., 94:3 (1972), 777–798 | DOI | MR | Zbl

[6] Gutman A. E., “Banach bundles in the theory of lattice-normed spaces. I: Continuous Banach bundles”, Siberian Adv. Math., 3:3 (1993), 1–55 | MR | Zbl

[7] Gutman A. E., “Banach bundles in the theory of lattice-normed spaces. II: Measurable Banach bundles”, Siberian Adv. Math., 3:4 (1993), 8–40 | MR | Zbl

[8] Haase M., “Convexity inequalities for positive operators”, Positivity, 11:1 (2007), 57–68 | DOI | MR | Zbl

[9] Krivine J. L., Théorèmes de factorisation dans les espaces réticulés, Seminar Maurey–Schwartz 1973/74, Exposé 22–23, École Politech. | MR

[10] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000, 405 pp. | MR | Zbl

[11] Kusraev A. G., Kutateladze S. S., Subdifferentials: Theory and Applications, Kluwer, Dordrecht, 1995 | MR | Zbl

[12] Kusraev A. G., Tabuev S. N., “On multiplication representation of disjointness preserving bilinear operators”, Siberian Math. J., 49:2 (2008), 357–366 | DOI | MR | Zbl

[13] Kutateladze S. S., Rubinov A. M., Minkowski Duality and Its Applications, Nauka, Novosibirsk, 1976 | MR

[14] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979, 243 pp. | MR | Zbl

[15] Lozanovskiĭ G. Ya., “Certain Banach lattice”, Sibirsk. Mat. Zh., 10:3 (1969), 584–599 | MR | Zbl

[16] Lozanovskiĭ G. Ya., “Certain Banach lattice. II”, Sibirsk. Mat. Zh., 12:3 (1971), 552–567 | MR

[17] Lozanovskiĭ G. Ya., “Certain Banach lattice. IV”, Sibirsk. Mat. Zh., 14:1 (1973), 140–155 | MR | Zbl

[18] Lozanovskiĭ G. Ya., “The functions of elements of vector lattices”, Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 4, 45–54 | MR | Zbl

[19] Rockafellar R. T., Convex Analysis, Princeton Univ. Press, Princeton–New Jersey, 1970 | MR | Zbl

[20] Rubinov A. M., “Monotonic analysis”, Studies on Functional Analysis and Its Applications, eds. A. G. Kusraev, V. M. Tikhomirov, Nauka, Moscow, 2006, 167–214 | MR

[21] Szulga J., “$(p,r)$-convex functions on vector lattices”, Proc. Edinburg Math. Soc., 37:2 (1994), 207–226 | DOI | MR | Zbl