@article{VMJ_2009_11_2_a3,
author = {M. \c{C}a\u{g}lar and T. M{\i}s{\i}rl{\i}o\u{g}lu},
title = {Weakly compact-friendly operators},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {27--30},
year = {2009},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a3/}
}
M. Çağlar; T. Mısırlıoğlu. Weakly compact-friendly operators. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 27-30. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a3/
[1] Abramovich Y. A., Aliprantis C. D., An Invitation to Operator Theory, Graduate Studies in Mathematics, 50, Amer. Math. Soc., Providence, Rhode Island, 2002 | MR | Zbl
[2] Abramovich Y. A., Aliprantis C. D., Burkinshaw O., “The invariant subspace problem: some recent advances”, Workshop on Measure Theory and Real Analysis (Grado, 1995) ; Rend. Inst. Mat. Univ. Trieste, 29 (1998), 3–79 | MR | Zbl
[3] Aliprantis C. D., Burkinshaw O., Positive Operators, Springer, The Netherlands, 2006, 376 pp. | MR
[4] Hoover T. B., “Quasi-similarity of operators”, Illinois J. Math., 16 (1972), 678–686 | MR | Zbl
[5] Laursen K. B., Neumann M. M., An Introduction to local spectral theory, London Mathematical Society Monographs. New ser., 20, Clarendon Press, Oxford, 2000, 577 pp. | MR | Zbl
[6] Sz.-Nagy B., Foiaş C., Harmonic analysis of operators on Hilbert space, American Elsevier Publishing Company, Inc., New York, 1970, 389 pp. | MR