On Riesz spaces with $b$-property and $b$-weakly compact operators
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 19-26
Voir la notice de l'article provenant de la source Math-Net.Ru
An operator $T\colon E\to X$ between a Banach lattice $E$ and a Banach space $X$ is called $b$-weakly compact if $T(B)$ is relatively weakly compact for each $b$-bounded set $B$ in $E$. We characterize $b$-weakly compact operators among $o$-weakly compact operators. We show summing operators are $b$-weakly compact and discuss relation between Dunford–Pettis and $b$-weakly compact operators. We give necessary conditions for $b$-weakly compact operators to be compact and give characterizations of $K\!B$-spaces in terms of $b$-weakly compact operators defined on them.
@article{VMJ_2009_11_2_a2,
author = {\c{S}. Alpay and B. Altin},
title = {On {Riesz} spaces with $b$-property and $b$-weakly compact operators},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {19--26},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/}
}
Ş. Alpay; B. Altin. On Riesz spaces with $b$-property and $b$-weakly compact operators. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 19-26. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/