On Riesz spaces with $b$-property and $b$-weakly compact operators
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 19-26

Voir la notice de l'article provenant de la source Math-Net.Ru

An operator $T\colon E\to X$ between a Banach lattice $E$ and a Banach space $X$ is called $b$-weakly compact if $T(B)$ is relatively weakly compact for each $b$-bounded set $B$ in $E$. We characterize $b$-weakly compact operators among $o$-weakly compact operators. We show summing operators are $b$-weakly compact and discuss relation between Dunford–Pettis and $b$-weakly compact operators. We give necessary conditions for $b$-weakly compact operators to be compact and give characterizations of $K\!B$-spaces in terms of $b$-weakly compact operators defined on them.
@article{VMJ_2009_11_2_a2,
     author = {\c{S}. Alpay and B. Altin},
     title = {On {Riesz} spaces with $b$-property and $b$-weakly compact operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/}
}
TY  - JOUR
AU  - Ş. Alpay
AU  - B. Altin
TI  - On Riesz spaces with $b$-property and $b$-weakly compact operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2009
SP  - 19
EP  - 26
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/
LA  - en
ID  - VMJ_2009_11_2_a2
ER  - 
%0 Journal Article
%A Ş. Alpay
%A B. Altin
%T On Riesz spaces with $b$-property and $b$-weakly compact operators
%J Vladikavkazskij matematičeskij žurnal
%D 2009
%P 19-26
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/
%G en
%F VMJ_2009_11_2_a2
Ş. Alpay; B. Altin. On Riesz spaces with $b$-property and $b$-weakly compact operators. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 19-26. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/