On Riesz spaces with $b$-property and $b$-weakly compact operators
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 19-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An operator $T\colon E\to X$ between a Banach lattice $E$ and a Banach space $X$ is called $b$-weakly compact if $T(B)$ is relatively weakly compact for each $b$-bounded set $B$ in $E$. We characterize $b$-weakly compact operators among $o$-weakly compact operators. We show summing operators are $b$-weakly compact and discuss relation between Dunford–Pettis and $b$-weakly compact operators. We give necessary conditions for $b$-weakly compact operators to be compact and give characterizations of $K\!B$-spaces in terms of $b$-weakly compact operators defined on them.
@article{VMJ_2009_11_2_a2,
     author = {\c{S}. Alpay and B. Altin},
     title = {On {Riesz} spaces with $b$-property and $b$-weakly compact operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {19--26},
     year = {2009},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/}
}
TY  - JOUR
AU  - Ş. Alpay
AU  - B. Altin
TI  - On Riesz spaces with $b$-property and $b$-weakly compact operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2009
SP  - 19
EP  - 26
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/
LA  - en
ID  - VMJ_2009_11_2_a2
ER  - 
%0 Journal Article
%A Ş. Alpay
%A B. Altin
%T On Riesz spaces with $b$-property and $b$-weakly compact operators
%J Vladikavkazskij matematičeskij žurnal
%D 2009
%P 19-26
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/
%G en
%F VMJ_2009_11_2_a2
Ş. Alpay; B. Altin. On Riesz spaces with $b$-property and $b$-weakly compact operators. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 19-26. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a2/

[1] Aliprantis C. D., Burkinshaw O., Locally solid Riesz spaces, Acad. press, New York, 1978 | MR | Zbl

[2] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. press, New York, 1985, 367 pp. | MR | Zbl

[3] Alpay S., Altin B., Tonyali C., “On Property (b) of Vector Lattices”, Positivity, 7 (2003), 135–139 | DOI | MR | Zbl

[4] Alpay S., Altin B., Tonyali C., “A note on Riesz spaces with property-$b$”, Czech. Math. J., 56(131) (2006), 765–772 | DOI | MR | Zbl

[5] Alpay S., Altin B., “A note on $b$-weakly compact operators”, Positivity, 11 (2007), 575–582 | DOI | MR | Zbl

[6] Alpay Ş., Ercan Z., “Characterization of Riesz spaces with $b$-property”, Positivity, 13:1 (2009), 21–30 | DOI | MR | Zbl

[7] Altin B., “On $b$-weakly compact operators on Banach lattices”, Taiwan J. Math., 11 (2007), 143–150 | MR | Zbl

[8] Altin B., “On Banach Lattices with Levi norm”, Proc. Amer. Math. Soc., 135 (2007), 1059–1063 | DOI | MR | Zbl

[9] Aqzzouz B., Elbour A., Hmichane J., “The duality problem for the class of $b$-weakly compact operators”, Positivity, 13:4 (2009), 683–692 | DOI | MR | Zbl

[10] Aqzzouz B., Elbour A., “On weak compactness of $b$-weakly compact operators”, Positivity, 14:1 (2010), 75–81 | DOI | MR | Zbl

[11] Aqzzouz B., Zraoula L., “AM-compactness of positive Dunford-Pettis operators on Banach Lattices”, Rend. Circlo. Math., 56 (2007), 305–316 | DOI | MR | Zbl

[12] Dodds P. G., “o-weakly compact mappings of Riesz spaces”, Trans. Amer. Math. Soc., 124 (1975), 389–402 | MR

[13] Ghoussoub N., Johnson W. B., “Operators which factors through Banach lattices not containing $c_0$”, Lect. Notes Math., 1470, Springer, B. etc., 1991, 68–71 | DOI | MR

[14] Meyer-Nieberg P., Banach Lattices, Springer, Berlin etc., 1991, 395 pp. | MR | Zbl

[15] Niculescu C., “Order $\sigma$-continuous operators on Banach Lattices”, Lect. Notes in Math., 991, Springer, B. etc., 1983, 188–201 | DOI | MR

[16] Wickstead A. W., “Converses for the Dodds-Fremlin and Kalton-Saab Theorems”, Math. Proc. Camb. Phil. Soc., 120 (1996), 175–179 | DOI | MR | Zbl

[17] Zaanen A. C., Riesz Spaces, v. II, North-Holland, Amsterdam etc., 1983, 720 pp. | MR | Zbl