Weak continuity of a superposition operator in sequence spaces
Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 6-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2009_11_2_a1,
     author = {E. A. Alekhno},
     title = {Weak continuity of a superposition operator in sequence spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {6--18},
     year = {2009},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a1/}
}
TY  - JOUR
AU  - E. A. Alekhno
TI  - Weak continuity of a superposition operator in sequence spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2009
SP  - 6
EP  - 18
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a1/
LA  - ru
ID  - VMJ_2009_11_2_a1
ER  - 
%0 Journal Article
%A E. A. Alekhno
%T Weak continuity of a superposition operator in sequence spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2009
%P 6-18
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a1/
%G ru
%F VMJ_2009_11_2_a1
E. A. Alekhno. Weak continuity of a superposition operator in sequence spaces. Vladikavkazskij matematičeskij žurnal, Tome 11 (2009) no. 2, pp. 6-18. http://geodesic.mathdoc.fr/item/VMJ_2009_11_2_a1/

[1] Alekhno E. A., Zabreiko P. P., “Slabaya nepreryvnost operatora superpozitsii v idealnykh prostranstvakh s nepreryvnoi meroi”, Tr. IM NAN Belarusi, 12:1 (2004), 21–24 | MR

[2] Alekhno E. A., Zabreiko P. P., “O slaboi nepreryvnosti operatora superpozitsii v prostranstve $L_\infty$”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2005, no. 2, 17–23 | MR

[3] Bogachev V. I., Osnovy teorii mery, v. 1, M.–Izhevsk, 2006, 584 pp.

[4] Zabreiko P. P., “Idealnye prostranstva funktsii”, Vestnik Yaroslavskogo un-ta, 1974, no. 8, 12–52 | MR

[5] Abramovich Y. A., Aliprantis C. D., An invitation to operator theory, Grad. Stud. in Math., 50, Amer. Math. Soc., Providence (R. I.), 2002, 530 pp. | MR | Zbl

[6] Alekhno E. A., “On weak continuity of a superposition operator on the space of all bounded sequences”, Methods of Functional Analysis and Topology, 11:3 (2005), 207–216 | MR | Zbl

[7] Appell J., Zabrejko P. P., Nonlinear superposition operators, Camb. univ. press, Cambridge, 1990, 312 pp. | MR | Zbl

[8] Schaefer H. H., Banach lattices and positive operators, Springer, B. etc., 1974, 376 pp. | MR | Zbl