Nonlocal solutions of systems of operator equations in spaces of measurable vector functions
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 4, pp. 49-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2008_10_4_a6,
     author = {V. G. Fetisov},
     title = {Nonlocal solutions of systems of operator equations in spaces of measurable vector functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {49--60},
     year = {2008},
     volume = {10},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_4_a6/}
}
TY  - JOUR
AU  - V. G. Fetisov
TI  - Nonlocal solutions of systems of operator equations in spaces of measurable vector functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2008
SP  - 49
EP  - 60
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2008_10_4_a6/
LA  - ru
ID  - VMJ_2008_10_4_a6
ER  - 
%0 Journal Article
%A V. G. Fetisov
%T Nonlocal solutions of systems of operator equations in spaces of measurable vector functions
%J Vladikavkazskij matematičeskij žurnal
%D 2008
%P 49-60
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2008_10_4_a6/
%G ru
%F VMJ_2008_10_4_a6
V. G. Fetisov. Nonlocal solutions of systems of operator equations in spaces of measurable vector functions. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 4, pp. 49-60. http://geodesic.mathdoc.fr/item/VMJ_2008_10_4_a6/

[1] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 390 pp. | MR

[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 896 pp.

[3] Golomb M., “Uber Systeme von nichtlinearen Integralgleichungen”, Publ. Math. Univ. Belgrade, 5 (1936), 45–75

[4] Fetisov V. G., “Variatsionnyi metod pri issledovanii razreshimosti sistem nelineinykh uravnenii”, Vestn. Tamb. gos. un-ta, 8:3 (2003), 473–475 | MR

[5] Fetisov V. G., “Otkrytye voprosy nelineinykh mazhoriruemykh operatorov v lokalno ogranichennykh prostranstvakh”, Vladikavk. mat. zhurn., 5:1 (2003), 57–61 | MR | Zbl

[6] Fetisov V. G., Filippenko V. I., Kozobrod V. N., Operatory i uravneniya v lineinykh topologicheskikh prostranstvakh, VNTs RAN, Vladikavkaz, 2006, 432 pp.