Nonstandard models and optimization
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 4, pp. 39-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is an overview of a few possibilities that are open by model theory in optimization. Most attention is paid to the impact of infinitesimal analysis and Boolean valued models to convexity, Pareto optimality, and hyperapproximation.
@article{VMJ_2008_10_4_a5,
     author = {S. S. Kutateladze},
     title = {Nonstandard models and optimization},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {39--48},
     year = {2008},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_4_a5/}
}
TY  - JOUR
AU  - S. S. Kutateladze
TI  - Nonstandard models and optimization
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2008
SP  - 39
EP  - 48
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2008_10_4_a5/
LA  - en
ID  - VMJ_2008_10_4_a5
ER  - 
%0 Journal Article
%A S. S. Kutateladze
%T Nonstandard models and optimization
%J Vladikavkazskij matematičeskij žurnal
%D 2008
%P 39-48
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2008_10_4_a5/
%G en
%F VMJ_2008_10_4_a5
S. S. Kutateladze. Nonstandard models and optimization. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 4, pp. 39-48. http://geodesic.mathdoc.fr/item/VMJ_2008_10_4_a5/

[1] Kantorovich L. V., “Functional Analysis and Applied Mathematics”, Vestnik Leningrad Univ. Math., 6 (1948), 3–18 | MR

[2] Kantorovich L. V., “Functional Analysis and Applied Mathematics”, Uspekhi Mat. Nauk, 3:6 (1948), 3–50 | MR

[3] Kantorovich L. V., “On Semiordered Linear Spaces and Their Applications in the Theory of Linear Operators”, Dokl. Akad. Nauk SSSR, 4:1/2 (1935), 11–14

[4] Kantorovich L. V., “The Principle of Majorants and the Newton Method”, Dokl. Akad. Nauk SSSR, 76:1 (1951), 17–20

[5] Sobolev S. L., Lyusternik L. A., Kantorovich L. V., “Functional Analysis and Computational Mathematics”, Proceedings of the Third All-Union Mathematical Congress (Moscow, June–July), v. 2, Moscow, 1956, 43

[6] Kantorovich L. V., “Functional Analysis (the Main Ideas)”, Sibirsk. Mat. Zh., 28:1 (1987), 7–16 | MR | Zbl

[7] Kantorovich L. V., “My Way in Science”, Uspekhi Mat. Nauk, 48:2 (1987), 183–213 | MR

[8] Kantorovich L. V., Selected Works, v. I, Descriptive Theory of Sets and Functions. Functional Analysis in Semi-ordered Spaces, Gordon and Breach Publishers, Amsterdam, 1996 | MR | Zbl

[9] Kantorovich L. V., Selected Works, v. II, Applied Functional Analysis. Approximation Methods and Computers, Gordon and Breach Publishers, Amsterdam, 1996 | MR | Zbl

[10] Kusraev A. G., Dominated Operators, Kluwer Academic Publishers, Dordrecht, 2001 ; Nauka, Moscow, 2003 | MR

[11] Kusraev A. G., Kutateladze S. S., Introduction to Boolean Valued Analysis, Nauka, Moscow, 2005 | MR | Zbl

[12] Kutateladze S. S., “Convex Operators”, Uspekhi Mat. Nauk, 34:1 (1979), 167–196 | MR | Zbl

[13] Kutateladze S. S., “Convex $\varepsilon$-Programming”, Dokl. Akad. Nauk SSSR, 245:5 (1979), 1048–1050 | MR | Zbl

[14] Kutateladze S. S., “A Version of Nonstandard Convex Programming”, Sibirsk. Mat. Zh., 27:4 (1986), 84–92 | MR | Zbl

[15] Kusraev A. G., Kutateladze S. S., Subdifferential Calculus: Theory and Applications, Nauka, Moscow, 2007 | Zbl

[16] Gordon E. I., Kusraev A. G., Kutateladze S. S., Infinitesimal Analysis: Selected Topics, Nauka, Moscow, 2008

[17] Zalinescu C., Convex Analysis in General Vector Spaces, World Scientific Publishers, London, 2002 | MR | Zbl

[18] Singer I., Abstract Convex Analysis, John Wiley Sons, New York, 1997 | MR | Zbl

[19] Gutiérrez C., Jiménez B., Novo V., “On Approximate Solutions in Vector Optimization Problems via Scalarization”, Comput. Optim. Appl., 35:3 (2006), 305–324 | DOI | MR | Zbl

[20] Gutiérrez C., Jiménez B., Novo V., “Optimality Conditions for Metrically Consistent Approximate Solutions in Vector Optimization”, J. Optim. Theory Appl., 133:1 (2007), 49–64 | DOI | MR | Zbl