@article{VMJ_2008_10_3_a6,
author = {F. Polat},
title = {Linear operators on {Abramovich{\textendash}Wickstead} type spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {46--55},
year = {2008},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a6/}
}
F. Polat. Linear operators on Abramovich–Wickstead type spaces. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 3, pp. 46-55. http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a6/
[1] Abramovich Y. A., Wickstead A. W., “Regular operators from and into a small Riesz space”, Indag. Math. N. S., 2:3 (1991), 257–274 | DOI | MR | Zbl
[2] Abramovich Y. A., Wickstead A. W., “Remarkable classes of unital AM-spaces”, J. of Math. Analysis and Appl., 180 (1993), 398–411 | DOI | MR | Zbl
[3] Ercan Z., Alpay S., “$CD_{0}(K,E)$ and $CD_w(K,E)$-spaces as Banach lattices”, Positivity, 4 (2000), 213–225 | DOI | MR | Zbl
[4] Ercan Z., Onal S., “Kakutani-Krein compact space of $CD_w(X)$-spaces interms of $X\otimes\{0, 1\}$”, J. of Math. Anal. and Appl., 313:2 (2006), 611–631 | DOI | MR | Zbl
[5] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. press, New York, 1985, xvi+367 pp. | MR | Zbl
[6] Kusraev A. G., Kutateladze S. S., Subdifferentials: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1995, 408 pp. | MR | Zbl
[7] Wright J. D. M., “An algebraic characterization of vector lattices with the Borel regularity property”, J. London Math. Soc., 7:2 (1973), 277–285 | DOI | MR | Zbl