Linear operators on Abramovich–Wickstead type spaces
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 3, pp. 46-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note, we define and investigate Abramovich–Wickstead type spaces the elements of which are the sums of continuous functions and discrete functions. We give an analytic representation of regular and order continuous regular operators on these spaces with values in a Dedekind complete vector lattice.
@article{VMJ_2008_10_3_a6,
     author = {F. Polat},
     title = {Linear operators on {Abramovich{\textendash}Wickstead} type spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {46--55},
     year = {2008},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a6/}
}
TY  - JOUR
AU  - F. Polat
TI  - Linear operators on Abramovich–Wickstead type spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2008
SP  - 46
EP  - 55
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a6/
LA  - en
ID  - VMJ_2008_10_3_a6
ER  - 
%0 Journal Article
%A F. Polat
%T Linear operators on Abramovich–Wickstead type spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2008
%P 46-55
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a6/
%G en
%F VMJ_2008_10_3_a6
F. Polat. Linear operators on Abramovich–Wickstead type spaces. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 3, pp. 46-55. http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a6/

[1] Abramovich Y. A., Wickstead A. W., “Regular operators from and into a small Riesz space”, Indag. Math. N. S., 2:3 (1991), 257–274 | DOI | MR | Zbl

[2] Abramovich Y. A., Wickstead A. W., “Remarkable classes of unital AM-spaces”, J. of Math. Analysis and Appl., 180 (1993), 398–411 | DOI | MR | Zbl

[3] Ercan Z., Alpay S., “$CD_{0}(K,E)$ and $CD_w(K,E)$-spaces as Banach lattices”, Positivity, 4 (2000), 213–225 | DOI | MR | Zbl

[4] Ercan Z., Onal S., “Kakutani-Krein compact space of $CD_w(X)$-spaces interms of $X\otimes\{0, 1\}$”, J. of Math. Anal. and Appl., 313:2 (2006), 611–631 | DOI | MR | Zbl

[5] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. press, New York, 1985, xvi+367 pp. | MR | Zbl

[6] Kusraev A. G., Kutateladze S. S., Subdifferentials: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1995, 408 pp. | MR | Zbl

[7] Wright J. D. M., “An algebraic characterization of vector lattices with the Borel regularity property”, J. London Math. Soc., 7:2 (1973), 277–285 | DOI | MR | Zbl