On some properties of orthosymmetric bilinear operators
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 3, pp. 29-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This note contains some properties of positive orthosymmetric bilinear operators on vector lattices which are well known for almost $f$-algebra multiplication but despite of their simplicity does not seem appeared in the literature.
@article{VMJ_2008_10_3_a3,
     author = {A. G. Kusraev},
     title = {On some properties of orthosymmetric bilinear operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {29--33},
     year = {2008},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a3/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - On some properties of orthosymmetric bilinear operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2008
SP  - 29
EP  - 33
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a3/
LA  - en
ID  - VMJ_2008_10_3_a3
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T On some properties of orthosymmetric bilinear operators
%J Vladikavkazskij matematičeskij žurnal
%D 2008
%P 29-33
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a3/
%G en
%F VMJ_2008_10_3_a3
A. G. Kusraev. On some properties of orthosymmetric bilinear operators. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 3, pp. 29-33. http://geodesic.mathdoc.fr/item/VMJ_2008_10_3_a3/

[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. press inc., London etc., 1985, 367 pp. | MR | Zbl

[2] Bernau S. J., Huijsmans C. B., “Almost $f$-algebras and $d$-algebras”, Math. Proc. London Phil. Soc., 107 (1990), 287–308 | MR | Zbl

[3] Boulabiar K., “Products in almost $f$-algebras”, Comment. Math Univ. Carolinae, 38 (1997), 749–761 | MR

[4] Boulabiar K., “A relationship between two almost $f$-algebra multiplications”, Algebra Univers., 43 (2000), 347–367 | DOI | MR | Zbl

[5] Boulabiar K., Buskes G., Triki A., “Results in $f$-algebras”, Positivity, eds. K. Boulabiar, G. Buskes, A. Triki, Birkhäuser, Basel a. o., 2007, 73–96 | MR | Zbl

[6] Bu Q., Buskes G., Kusraev A. G., “Bilinear maps on product of vector lattices: A survey”, Positivity, eds. K. Boulabiar, G. Buskes, A. Triki, Birkhäuser, Basel a. o., 2007, 97–126 | MR | Zbl

[7] Buskes G., Kusraev A. G., “Representation and extension of orthoregular bilinear operators”, Vladikavkaz Math. J., 9:1 (2007), 16–29 | MR

[8] Buskes G., van Rooij A., “Almost $f$-algebras: commutativity and the Cauchy–Schwarz inequality”, Positivity, 4:3 (2000), 227–231 | DOI | MR | Zbl

[9] Buskes G., van Rooij A., “Almost $f$-algebras: structure and Dedekind completion”, Positivity, 4:3 (2000), 233–243 | DOI | MR | Zbl

[10] Buskes G., van Rooij A., “Squares of Riesz spaces”, Rocky Mountain J. Math., 31:1 (2001), 45–56 | DOI | MR | Zbl

[11] Fremlin D. H., “Tensor product of Archimedean vector lattices”, Amer. J. Math., 94 (1972), 777–798 | DOI | MR | Zbl

[12] van Gaans O. W., “The Riesz part of a positive bilinear form”, Circumspice, Katholieke Universiteit Nijmegen, Nijmegen, 2001, 19–30

[13] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000 | MR | Zbl

[14] Kusraev A. G., “On the structure of orthosymmetric bilinear operators in vector lattices”, Dokl. RAS, 408:1 (2006), 25–27 | MR

[15] Schaefer H. H., “Aspects of Banach lattices”, Studies in Functional Analysis (1980), MMA Studies in Math., 21, Math. Assoc. America, 1980, 158–221 | MR | Zbl