On the property of the inward continuability of representing systems of exponentials on convex locally closed sets
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 2, pp. 36-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2008_10_2_a5,
     author = {S. N. Melikhov and Z. Momm},
     title = {On the property of the inward continuability of representing systems of exponentials on convex locally closed sets},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {36--45},
     year = {2008},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a5/}
}
TY  - JOUR
AU  - S. N. Melikhov
AU  - Z. Momm
TI  - On the property of the inward continuability of representing systems of exponentials on convex locally closed sets
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2008
SP  - 36
EP  - 45
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a5/
LA  - ru
ID  - VMJ_2008_10_2_a5
ER  - 
%0 Journal Article
%A S. N. Melikhov
%A Z. Momm
%T On the property of the inward continuability of representing systems of exponentials on convex locally closed sets
%J Vladikavkazskij matematičeskij žurnal
%D 2008
%P 36-45
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a5/
%G ru
%F VMJ_2008_10_2_a5
S. N. Melikhov; Z. Momm. On the property of the inward continuability of representing systems of exponentials on convex locally closed sets. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 2, pp. 36-45. http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a5/

[1] Abanin A. V., “O prodolzhenii i ustoichivosti slabo dostatochnykh mnozhestv”, Izv. vuzov. Matematika, 1987, no. 4, 3–10 | MR | Zbl

[2] Korobeinik Yu. F., Leontev A. F., “O svoistve vnutr-prodolzhaemosti predstavlyayuschikh sistem eksponent”, Mat. zametki, 28:2 (1980), 243–253 | MR | Zbl

[3] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Uspekhi mat. nauk, 36:1 (1981), 73–126 | MR | Zbl

[4] Korobeinik Yu. F., “Induktivnye i proektivnye topologii. Dostatochnye mnozhestva i predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matematika, 50:3 (1986), 539–565 | MR

[5] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR

[6] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968, 280 pp. | MR

[7] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971, 360 pp. | MR

[8] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969, 1071 pp.

[9] Bierstedt K.-D., Meise R., Summers W. H., “Köthe sets and Köthe sequence spaces”, Funct. Anal., Holomorphy and Approximation Theory, ed. J. A. Barroso, North-Holland Publishing Company, 1982, 28–91 | MR

[10] Cartan H., “Variétés analytiques réeles et variétés analytiques complexes”, Bull. Soc. Math. France, 85 (1957), 77–99 | MR | Zbl

[11] Hörmander L., Notions of Convexity, Birkhäuser, Boston etc., 1994, 414 pp. | MR | Zbl

[12] Martineau A., “Sur la topologie des espaces de fonctions holomorphes”, Math. Annal., 163 (1966), 62–88 | DOI | MR | Zbl

[13] Melikhov S. N., Momm S., “Analytic solutions of convolution equations on convex sets with obstacle in the boundary”, Math. Scand., 86 (2000), 293–319 | MR | Zbl

[14] Schneider D. M., “Sufficient sets for some spaces of entire functions”, Trans. Amer. Math. Soc., 197 (1974), 161–180 | MR | Zbl