Banach–Steinhaus type Theorem in locally convex spaces for $\sigma$-Locally Lipschitzian convex processes
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 2, pp. 32-35
Cet article a éte moissonné depuis la source Math-Net.Ru
The main purpose of this paper is to generalize the Banach–Steinhaus theorem in locally convex spaces for $\sigma$-locally Lipschitzian operators established by $S$. Lahrech in [1] to $\sigma$-locally Lipschitzian convex processes.
@article{VMJ_2008_10_2_a4,
author = {S. Lahrech and A. Jaddar and J. Hlal and A. Ouahab and A. Mbarki},
title = {Banach{\textendash}Steinhaus type {Theorem} in locally convex spaces for $\sigma${-Locally} {Lipschitzian} convex processes},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {32--35},
year = {2008},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a4/}
}
TY - JOUR AU - S. Lahrech AU - A. Jaddar AU - J. Hlal AU - A. Ouahab AU - A. Mbarki TI - Banach–Steinhaus type Theorem in locally convex spaces for $\sigma$-Locally Lipschitzian convex processes JO - Vladikavkazskij matematičeskij žurnal PY - 2008 SP - 32 EP - 35 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a4/ LA - en ID - VMJ_2008_10_2_a4 ER -
%0 Journal Article %A S. Lahrech %A A. Jaddar %A J. Hlal %A A. Ouahab %A A. Mbarki %T Banach–Steinhaus type Theorem in locally convex spaces for $\sigma$-Locally Lipschitzian convex processes %J Vladikavkazskij matematičeskij žurnal %D 2008 %P 32-35 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a4/ %G en %F VMJ_2008_10_2_a4
S. Lahrech; A. Jaddar; J. Hlal; A. Ouahab; A. Mbarki. Banach–Steinhaus type Theorem in locally convex spaces for $\sigma$-Locally Lipschitzian convex processes. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 2, pp. 32-35. http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a4/
[1] Lahrech S., “Banach–Steinhaus type theorem in locally convex spaces for linear $\sigma$-locally Lipschitzian operators”, Miskolc Mathematical Notes, 6 (2005), 43–45 | Zbl
[2] Rockafellar R. T., Monotone processes of Convex and Concave type, Memoirs of the Amer. Math. Soc., 77, 1967 | Zbl
[3] Rockafellar R. T., Convex Analysis, Princeton Univ. Press, Princeton, 1970 | Zbl
[4] Borwein J. M., Lewis A. S., Convex Analysis and Nonlinear Optimization, CMS Books in Mathematics, Gargnano, 1999
[5] Wilansky A., Modem Methods in TVS, McGraw-Hill, 1978 | Zbl
[6] Kothe G., Toplogical vector spaces, v. I, Springer, Berlin etc., 1983
[7] Brézis H., Analyse fonctionnelle, Théorie et applications, Masson, 1983 | Zbl