On classes of K\"othe spaces in which every complemented subspace has a basis
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 2, pp. 21-29

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VMJ_2008_10_2_a2,
     author = {V. P. Kondakov and A. I. Efimov},
     title = {On classes of {K\"othe} spaces in which every complemented subspace has a basis},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a2/}
}
TY  - JOUR
AU  - V. P. Kondakov
AU  - A. I. Efimov
TI  - On classes of K\"othe spaces in which every complemented subspace has a basis
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2008
SP  - 21
EP  - 29
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a2/
LA  - ru
ID  - VMJ_2008_10_2_a2
ER  - 
%0 Journal Article
%A V. P. Kondakov
%A A. I. Efimov
%T On classes of K\"othe spaces in which every complemented subspace has a basis
%J Vladikavkazskij matematičeskij žurnal
%D 2008
%P 21-29
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a2/
%G ru
%F VMJ_2008_10_2_a2
V. P. Kondakov; A. I. Efimov. On classes of K\"othe spaces in which every complemented subspace has a basis. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 2, pp. 21-29. http://geodesic.mathdoc.fr/item/VMJ_2008_10_2_a2/