On the generability of the group $PSL_n(Z)$ by three involutions, two of which commute
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 1, pp. 68-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2008_10_1_a8,
     author = {Ya. N. Nuzhin},
     title = {On the generability of the group $PSL_n(Z)$ by three involutions, two of which commute},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {68--74},
     year = {2008},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a8/}
}
TY  - JOUR
AU  - Ya. N. Nuzhin
TI  - On the generability of the group $PSL_n(Z)$ by three involutions, two of which commute
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2008
SP  - 68
EP  - 74
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a8/
LA  - ru
ID  - VMJ_2008_10_1_a8
ER  - 
%0 Journal Article
%A Ya. N. Nuzhin
%T On the generability of the group $PSL_n(Z)$ by three involutions, two of which commute
%J Vladikavkazskij matematičeskij žurnal
%D 2008
%P 68-74
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a8/
%G ru
%F VMJ_2008_10_1_a8
Ya. N. Nuzhin. On the generability of the group $PSL_n(Z)$ by three involutions, two of which commute. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 1, pp. 68-74. http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a8/

[1] Nuzhin Ya. N., “Porozhdayuschie troiki involyutsii grupp Shevalle nad konechnym polem kharakteristiki 2”, Algebra i logika, 29:2 (1990), 192–206 | MR | Zbl

[2] Nuzhin Ya. N., “O $(2\times 2,2)$-porozhdaemosti grupp Shevalle nad koltsom tselykh chisel”, Mezhd. sem. po teorii grupp, posvyaschennyi 70-letiyu A. I. Starostina i 80-letiyu N. F. Sesekina, Ekaterinburg, 2001, 168–169

[3] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975, 262 pp. | MR | Zbl

[4] Tamburini M. C., Zucca P., “Generation of Certain Matrix Groups by Three Involutions, Two of Which Commute”, J. of Algebra, 195 (1997), 650–661 | DOI | MR | Zbl