Edge-regular graphs in which every vertex lies in at most one good pair
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 1, pp. 53-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2008_10_1_a7,
     author = {A. A. Makhnev and N. V. Chuksina},
     title = {Edge-regular graphs in which every vertex lies in at most one good pair},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {53--67},
     year = {2008},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a7/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - N. V. Chuksina
TI  - Edge-regular graphs in which every vertex lies in at most one good pair
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2008
SP  - 53
EP  - 67
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a7/
LA  - ru
ID  - VMJ_2008_10_1_a7
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A N. V. Chuksina
%T Edge-regular graphs in which every vertex lies in at most one good pair
%J Vladikavkazskij matematičeskij žurnal
%D 2008
%P 53-67
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a7/
%G ru
%F VMJ_2008_10_1_a7
A. A. Makhnev; N. V. Chuksina. Edge-regular graphs in which every vertex lies in at most one good pair. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 1, pp. 53-67. http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a7/

[1] Makhnev A. A., Paduchikh D. V., “Novaya otsenka dlya chisla vershin reberno regulyarnykh grafov”, Sib. mat. zhurn., 48 (2007), 46–61 | MR

[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc., 1989, 495 pp. | MR | Zbl

[3] Makhnev A. A., “O silnoi regulyarnosti nekotorykh reberno regulyarnykh grafov”, Izv. RAN. Ser. mat., 68 (2004), 159–172 | MR

[4] Makhnev A. A., Vedenev A. A., Kuznetsov A. N., Nosov V. V., “O khoroshikh parakh v reberno regulyarnykh grafakh”, Diskret. mat., 15 (2003), 77–97 | MR | Zbl

[5] Makhnev A. A., Omelchenko A. S., “O reberno regulyarnykh grafakh, ne soderzhaschikh khoroshikh par”, Izvestiya Gomelskogo gosuniversiteta, 10:23 (2007), 103–118

[6] Kazarina V. I., Makhnev A. A., “O reberno regulyarnykh grafakh s $b_1=5$”, Algebra, logika i kibernetika (Mezhd. konf.), Tez. dokl., Irkutsk, 2004, 159–161

[7] Minakova I. M., Makhnev A. A., “Ob odnom klasse reberno regulyarnykh grafov”, Izv. Gomelskogo gosuniversiteta, 3:16 (2000), 145–154 | Zbl