A generalization of a theorem of Zassenhaus
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 1, pp. 40-52
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{VMJ_2008_10_1_a6,
author = {V. D. Mazurov},
title = {A generalization of a theorem of {Zassenhaus}},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {40--52},
year = {2008},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a6/}
}
V. D. Mazurov. A generalization of a theorem of Zassenhaus. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 1, pp. 40-52. http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a6/
[1] Zassenhaus H., “Über endliche Fastkörper”, Abh. Math. Semin. Univ. Hambburg, 11 (1935), 187–220 | DOI | Zbl
[2] Wolf J. A., Spaces of constant curvature, Univ. of California press, Berkley, 1972, 408 pp. ; Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982, 480 pp. | MR | MR
[3] Mazurov V. D., “Kharakterizatsiya znakoperemennykh grupp”, Algebra i logika, 44:1 (2005), 54–69 | MR | Zbl
[4] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.
[5] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972, 288 pp. | Zbl
[6] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977, 495 pp. | MR | Zbl
[7] Carmichael R. D., Introduction to the theory of groups of finite order, Boston, 1937, 447 pp. | MR