Quasi-complete Q-groups are bounded
Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 1, pp. 24-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that any $p$-torsion quasi-complete abelian Q-group is bounded. This extends a recent statement of ours in [6, Corollary 8] to an arbitrary large cardinality, thus also answering in the negative a conjecture from [6]. Some other related assertions are established as well.
@article{VMJ_2008_10_1_a2,
     author = {P. V. Danchev},
     title = {Quasi-complete {Q-groups} are bounded},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {24--26},
     year = {2008},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a2/}
}
TY  - JOUR
AU  - P. V. Danchev
TI  - Quasi-complete Q-groups are bounded
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2008
SP  - 24
EP  - 26
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a2/
LA  - en
ID  - VMJ_2008_10_1_a2
ER  - 
%0 Journal Article
%A P. V. Danchev
%T Quasi-complete Q-groups are bounded
%J Vladikavkazskij matematičeskij žurnal
%D 2008
%P 24-26
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a2/
%G en
%F VMJ_2008_10_1_a2
P. V. Danchev. Quasi-complete Q-groups are bounded. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 1, pp. 24-26. http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a2/

[1] Cutler D. O., Missel C., “The structure of C-decomposable $p^{\omega+n}$-projective abelian $p$-groups”, Commun. Alg., 12:3 (1984), 301–319 | DOI | MR | Zbl

[2] Chekhlov A. R., “On quasi-closed mixed groups”, Fund. Appl. Math., 8:4 (2002), 1215–1224 | MR | Zbl

[3] Crawley P., “An infinite primary abelian group without proper isomorphic subgroups”, Bull. Amer. Math. Soc., 68 (1962), 462–467 | DOI | MR

[4] Crawley P., “An isomorphic refinement theorem for certain abelian $p$-groups”, J. Algebra, 6 (1967), 376–387 | DOI | MR | Zbl

[5] Danchev P. V., “Notes on $p^{\omega+1}$-projective abelian $p$-groups”, Comment. Math. Univ. St. Pauli, 55:1 (2006), 17–27 | MR | Zbl

[6] Danchev P. V., “A note on weakly $\aleph_1$-separable abelian $p$-groups”, Vladikavkaz Math. J., 9:1 (2007), 30–37 | MR

[7] Fuchs L., Infinite Abelian Groups, v. I; II, Mir, Moscow, 1974, 1977 (In Russian) | MR | Zbl

[8] Irwin J. M., Cellars R. M., Snabb T., “A functorial generalization of Ulm's theorem”, Comment. Math. Univ. St. Pauli, 27:2 (1978), 155–177 | MR

[9] Irwin J. M., Richman F., “Direct sums of countable groups and related concepts”, J. Algebra, 2:4 (1965), 443–450 | DOI | MR | Zbl

[10] Kamalov F., “Q-groups and Fuchs 5-groups”, Izv. Vishih Uch. Zav. Math., 1974, no. 10, 29–36 | MR | Zbl

[11] Khabbaz S. A., “Abelian torsion groups having a minimal system of generators”, Trans. Amer. Math. Soc., 98 (1961), 527–538 | MR | Zbl

[12] Megibben C. K., “Large subgroups and small homomorphisms”, Mich. Math. J., 13:2 (1966), 153–160 | DOI | MR | Zbl

[13] Megibben C. K., “Stiff groups and wild socles”, Tohoku Math. J., 20 (1968), 577–581 | DOI | MR | Zbl

[14] Richman F., “Thin abelian $p$-groups”, Pac. J. Math., 27:3 (1968), 599–606 | MR | Zbl