@article{VMJ_2008_10_1_a2,
author = {P. V. Danchev},
title = {Quasi-complete {Q-groups} are bounded},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {24--26},
year = {2008},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a2/}
}
P. V. Danchev. Quasi-complete Q-groups are bounded. Vladikavkazskij matematičeskij žurnal, Tome 10 (2008) no. 1, pp. 24-26. http://geodesic.mathdoc.fr/item/VMJ_2008_10_1_a2/
[1] Cutler D. O., Missel C., “The structure of C-decomposable $p^{\omega+n}$-projective abelian $p$-groups”, Commun. Alg., 12:3 (1984), 301–319 | DOI | MR | Zbl
[2] Chekhlov A. R., “On quasi-closed mixed groups”, Fund. Appl. Math., 8:4 (2002), 1215–1224 | MR | Zbl
[3] Crawley P., “An infinite primary abelian group without proper isomorphic subgroups”, Bull. Amer. Math. Soc., 68 (1962), 462–467 | DOI | MR
[4] Crawley P., “An isomorphic refinement theorem for certain abelian $p$-groups”, J. Algebra, 6 (1967), 376–387 | DOI | MR | Zbl
[5] Danchev P. V., “Notes on $p^{\omega+1}$-projective abelian $p$-groups”, Comment. Math. Univ. St. Pauli, 55:1 (2006), 17–27 | MR | Zbl
[6] Danchev P. V., “A note on weakly $\aleph_1$-separable abelian $p$-groups”, Vladikavkaz Math. J., 9:1 (2007), 30–37 | MR
[7] Fuchs L., Infinite Abelian Groups, v. I; II, Mir, Moscow, 1974, 1977 (In Russian) | MR | Zbl
[8] Irwin J. M., Cellars R. M., Snabb T., “A functorial generalization of Ulm's theorem”, Comment. Math. Univ. St. Pauli, 27:2 (1978), 155–177 | MR
[9] Irwin J. M., Richman F., “Direct sums of countable groups and related concepts”, J. Algebra, 2:4 (1965), 443–450 | DOI | MR | Zbl
[10] Kamalov F., “Q-groups and Fuchs 5-groups”, Izv. Vishih Uch. Zav. Math., 1974, no. 10, 29–36 | MR | Zbl
[11] Khabbaz S. A., “Abelian torsion groups having a minimal system of generators”, Trans. Amer. Math. Soc., 98 (1961), 527–538 | MR | Zbl
[12] Megibben C. K., “Large subgroups and small homomorphisms”, Mich. Math. J., 13:2 (1966), 153–160 | DOI | MR | Zbl
[13] Megibben C. K., “Stiff groups and wild socles”, Tohoku Math. J., 20 (1968), 577–581 | DOI | MR | Zbl
[14] Richman F., “Thin abelian $p$-groups”, Pac. J. Math., 27:3 (1968), 599–606 | MR | Zbl