Hölder type inequalities for orthosymmetric bilinear operators
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 36-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An interplay between squares of vector lattice and homogeneous functional calculus is considered and Hölder type inequalities for orthosymmetric bilinear operators are obtained.
@article{VMJ_2007_9_3_a4,
     author = {A. G. Kusraev},
     title = {H\"older type inequalities for orthosymmetric bilinear operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {36--46},
     year = {2007},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a4/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - Hölder type inequalities for orthosymmetric bilinear operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2007
SP  - 36
EP  - 46
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a4/
LA  - en
ID  - VMJ_2007_9_3_a4
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T Hölder type inequalities for orthosymmetric bilinear operators
%J Vladikavkazskij matematičeskij žurnal
%D 2007
%P 36-46
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a4/
%G en
%F VMJ_2007_9_3_a4
A. G. Kusraev. Hölder type inequalities for orthosymmetric bilinear operators. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 36-46. http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a4/

[1] Abramovich Y. A., Aliprantis C. D., An Invitation to Operator Theory, Graduate Studies in Mathematics, 50, Amer. Math. Soc., Providence, Rhode Island, 2002 | MR | Zbl

[2] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, New York, 1985, xvi+367 pp. | MR | Zbl

[3] Aczél J., Dhombres J., Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge etc., 1989 | MR | Zbl

[4] Bernau S. J., Huijsmans C. B., “The Schwarz inequality in Archimedean $f$-algebras”, Indag. Math. N. S., 7:2 (1996), 137–148 | DOI | MR | Zbl

[5] Bourbaki N., Integration, Ch. 1–8, Hermann, Paris, 1967 (In French)

[6] Buskes G., de Pagter B., van Rooij A., “Functional calculus in Riesz spaces”, Indag. Math. N. S., 4:2 (1991), 423–436 | DOI | MR | Zbl

[7] Buskes G., Kusraev A. G., “Representation and extension of orthoregular bilinear operators”, Vladikavkaz Math. J., 8:1 (2007), 16–29 | MR

[8] Buskes G., van Rooij A., “Almost $f$-algebras: commutativity and the Cauchy–Schwarz inequality”, Positivity, 4 (2000), 227–231 | DOI | MR | Zbl

[9] Buskes G., van Rooij A., “Squares of Riesz spaces”, Rocky Mountain J. Math., 31:1 (2001), 45–56 | DOI | MR | Zbl

[10] Drnovšek R., “Spectral inequalities for compact integral operators on Banach function spaces”, Math. Proc. Camb. Phil. Soc., 112 (1992), 589–598 | DOI | MR | Zbl

[11] Drnovšek R., Peperko A., “Inequalities for the Hadamard weighted geometric mean of positive kernel operators on Banach function spaces”, Positivity, 10:4 (2006), 613–626 | DOI | MR | Zbl

[12] Haase M., “Convexity inequalities for positive operators”, Positivity, 11:1 (2007), 57–68 | DOI | MR | Zbl

[13] Krivine J. L., Theoremes de factorisation dans les espaces reticulés, Seminar Maurey-Schwartz, Exp. 22/23, Ecole Politech, Paris, 1973/74, 22 pp. | MR

[14] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000, 445 pp. | MR | Zbl

[15] Kusraev A. G., “On the structure of orthosymmetric bilinear operators in vector lattices”, Dokl. RAS, 408:1 (2006), 25–27 | MR

[16] Kusraev A. G., Orthosymmetric Bilinear Operators, Inst. of Appl. Math. and Infomat. VSC RAS, Vladikavkaz, 2007

[17] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Function Spaces, Springer, Berlin etc., 1979, 243 pp. | MR | Zbl

[18] Lozanovskiĭ G. Ya., “On topologically reflexive $KB$-spaces”, Dokl. Akad. Nauk SSSR, 158:3 (1964), 516–519 | MR | Zbl

[19] Lozanovskiĭ G. Ya., “The functions of elements of vector lattices”, Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 4, 45–54 | MR | Zbl

[20] Rockafellar R. T., Convex Analysis, Princeton Univ. Press, Princeton–New Jersey, 1970, 468 pp. | MR | Zbl

[21] Schwarz H.-V., Banach Lattices and Operators, Teubner, Leipzig, 1984, 208 pp. | MR | Zbl

[22] Szulga J., “$(p,r)$-convex functions on vector lattices”, Proc. Edinburg Math. Soc., 37 (1994), 207–226 | DOI | MR | Zbl