Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 22-26
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of $LR$-nets provides an appropriate setting for study of various ergodic theorems in Banach spaces. In the present paper, we prove Theorems 2.1, 3.1 which extend Eberlein's and Sine's ergodic theorems to $LR$-nets. Together with Theorem 1.1, these two theorems form the necessary background for further investigation of strongly convergent $LR$-nets. Theorem 2.1 is due to F. Räbiger, and was announced without a proof in [1].
@article{VMJ_2007_9_3_a2,
author = {E. Yu. Emel'yanov and N. Erkursun},
title = {Generalization of {Eberlein's} and {Sine's} ergodic theorems to $LR$-nets},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {22--26},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/}
}
TY - JOUR AU - E. Yu. Emel'yanov AU - N. Erkursun TI - Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets JO - Vladikavkazskij matematičeskij žurnal PY - 2007 SP - 22 EP - 26 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/ LA - en ID - VMJ_2007_9_3_a2 ER -
E. Yu. Emel'yanov; N. Erkursun. Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 22-26. http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/