Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 22-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of $LR$-nets provides an appropriate setting for study of various ergodic theorems in Banach spaces. In the present paper, we prove Theorems 2.1, 3.1 which extend Eberlein's and Sine's ergodic theorems to $LR$-nets. Together with Theorem 1.1, these two theorems form the necessary background for further investigation of strongly convergent $LR$-nets. Theorem 2.1 is due to F. Räbiger, and was announced without a proof in [1].
@article{VMJ_2007_9_3_a2,
     author = {E. Yu. Emel'yanov and N. Erkursun},
     title = {Generalization of {Eberlein's} and {Sine's} ergodic theorems to $LR$-nets},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {22--26},
     year = {2007},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/}
}
TY  - JOUR
AU  - E. Yu. Emel'yanov
AU  - N. Erkursun
TI  - Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2007
SP  - 22
EP  - 26
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/
LA  - en
ID  - VMJ_2007_9_3_a2
ER  - 
%0 Journal Article
%A E. Yu. Emel'yanov
%A N. Erkursun
%T Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets
%J Vladikavkazskij matematičeskij žurnal
%D 2007
%P 22-26
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/
%G en
%F VMJ_2007_9_3_a2
E. Yu. Emel'yanov; N. Erkursun. Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 22-26. http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/

[1] Räbiger F., “Stability and ergodicity of dominated semigroups. II: The strong case”, Math. Ann., 297 (1993), 103–116 | DOI | MR | Zbl

[2] Lotz H. P., “Tauberian theorems for operators on Banach spaces”, Semesterbericht Functionalanalysis, WS-1983/84, Tübingen, 1–15

[3] Krengel U., Ergodic Theorems, De Gruyter, Berlin–New York, 1985 | MR | Zbl