Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 22-26

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of $LR$-nets provides an appropriate setting for study of various ergodic theorems in Banach spaces. In the present paper, we prove Theorems 2.1, 3.1 which extend Eberlein's and Sine's ergodic theorems to $LR$-nets. Together with Theorem 1.1, these two theorems form the necessary background for further investigation of strongly convergent $LR$-nets. Theorem 2.1 is due to F. Räbiger, and was announced without a proof in [1].
@article{VMJ_2007_9_3_a2,
     author = {E. Yu. Emel'yanov and N. Erkursun},
     title = {Generalization of {Eberlein's} and {Sine's} ergodic theorems to $LR$-nets},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {22--26},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/}
}
TY  - JOUR
AU  - E. Yu. Emel'yanov
AU  - N. Erkursun
TI  - Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2007
SP  - 22
EP  - 26
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/
LA  - en
ID  - VMJ_2007_9_3_a2
ER  - 
%0 Journal Article
%A E. Yu. Emel'yanov
%A N. Erkursun
%T Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets
%J Vladikavkazskij matematičeskij žurnal
%D 2007
%P 22-26
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/
%G en
%F VMJ_2007_9_3_a2
E. Yu. Emel'yanov; N. Erkursun. Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 22-26. http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a2/