Spaces of $CD_0$-functions and doubling in the sense of Aleksandrov
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 11-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2007_9_3_a1,
     author = {A. E. Gutman and A. V. Koptev},
     title = {Spaces of $CD_0$-functions and doubling in the sense of {Aleksandrov}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--21},
     year = {2007},
     volume = {9},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a1/}
}
TY  - JOUR
AU  - A. E. Gutman
AU  - A. V. Koptev
TI  - Spaces of $CD_0$-functions and doubling in the sense of Aleksandrov
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2007
SP  - 11
EP  - 21
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a1/
LA  - ru
ID  - VMJ_2007_9_3_a1
ER  - 
%0 Journal Article
%A A. E. Gutman
%A A. V. Koptev
%T Spaces of $CD_0$-functions and doubling in the sense of Aleksandrov
%J Vladikavkazskij matematičeskij žurnal
%D 2007
%P 11-21
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a1/
%G ru
%F VMJ_2007_9_3_a1
A. E. Gutman; A. V. Koptev. Spaces of $CD_0$-functions and doubling in the sense of Aleksandrov. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 3, pp. 11-21. http://geodesic.mathdoc.fr/item/VMJ_2007_9_3_a1/

[1] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, Novosibirsk, 1978, 368 pp. | MR | Zbl

[2] Alpai Sh., Erdzhan Z., “Zametka o prostranstvakh $CD_0(K)$”, Sib. mat. zhurn., 47:3 (2006), 514–517 | MR

[3] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Tr. In-ta matematiki SO RAN, 29, Izd-vo In-ta matematiki, Novosibirsk, 1995, 63–211 | MR

[4] Gutman A. E., Koptev A. V., “Prostranstva $CD_0$-sechenii i $CD_0$-gomomorfizmov banakhovykh rassloenii”, Vestn. Novosib. gos. un-ta. Ser. Matematika, mekhanika, informatika, 2007 (to appear)

[5] Koptev A. V., “Neskolko klassov banakhovykh rassloenii s nepreryvnymi slabo nepreryvnymi secheniyami”, Sib. mat. zhurn., 45:3 (2004), 600–612 | MR | Zbl

[6] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003, 619 pp. | MR

[7] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[8] Abramovich Y. A., Wickstead A. W., “Regular operators from and into a small Riesz space”, Indag. Math. N.S., 2:3 (1991), 257–274 | DOI | MR | Zbl

[9] Abramovich Y. A., Wickstead A. W., “Remarkable classes of unital $AM$-spaces”, J. Math. Anal. Appl., 180:2 (1993), 398–411 | DOI | MR | Zbl

[10] Abramovich Y. A., Wickstead A. W., “The regularity of order bounded operators into $C(K)$, II”, Quart. J. Math. Oxford Ser. 2, 44:175 (1993), 257–270 | DOI | MR | Zbl

[11] Alpay Ş., Ercan Z., “$CD_0(K,E)$ and $CD_\omega(K,E)$-spaces as Banach lattices”, Positivity, 4:3 (2000), 213–225 | DOI | MR | Zbl

[12] Ercan Z., “A concrete description of $CD_0(K)$-spaces as $C(X)$-spaces and its applications”, Proc. Amer. Math. Soc., 132 (2004), 1761–1763 | DOI | MR | Zbl

[13] Gierz G., Bundles of Topological Vector Spaces and Their Duality, Lecture Notes in Math., 955, Springer, Berlin, 1982 | MR | Zbl

[14] Hõim T., Robbins D. A., “Section spaces of Banach bundles which generalize some function spaces”, Siberian Adv. Math., 16:3 (2006), 71–81 | MR

[15] Troitsky V. G., “On $CD_0(K)$-spaces”, Vladikavk. mat. zhurn., 6:1 (2004), 71–73 | MR | Zbl