Some asymptotic properties of a kernel spectrum estimate with different multitapers
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 56-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X(t)$, $t=0,\pm 1,\ldots,$ be a zero mean real-valued stationary time series with spectrum $f_{XX}(\lambda )$, $-\pi\le\lambda\le\pi$. Given the realization $X(1),X(2),\dots,X(N)$, we construct $L$ different multitapered periodograms $I_{XX}^{(mt)_{j}}(\lambda)$, $j=1,2,\dots,L$, on non-overlapped and overlapped segments $X^{(j)}(t)$, $1\le t. Also, we give asymptotic expressions of the mean and variance of the average of these different multitapered periodograms. We obtain an estimate of $f_{XX}(\lambda)$ via $I_{XX}^{(mt)_{j}}(\lambda )$ and different kernels $W_{\beta}^{(j)}(\alpha)$, $j=1,2,\dots,L$; $-\pi<\alpha\le\pi$; $\beta$ is a bandwidth. We find asymptotic expressions of the first and second-order moments of this estimate. Moreover, we propose a choice of the considered bandwidth. An asymptotic expression of the integrated relative mean squared error (IMSE) of the estimate is formulated.
@article{VMJ_2007_9_1_a5,
     author = {A. A. M. Teamah and H. S. Bakouch},
     title = {Some asymptotic properties of a kernel spectrum estimate with different multitapers},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--61},
     year = {2007},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/}
}
TY  - JOUR
AU  - A. A. M. Teamah
AU  - H. S. Bakouch
TI  - Some asymptotic properties of a kernel spectrum estimate with different multitapers
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2007
SP  - 56
EP  - 61
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/
LA  - en
ID  - VMJ_2007_9_1_a5
ER  - 
%0 Journal Article
%A A. A. M. Teamah
%A H. S. Bakouch
%T Some asymptotic properties of a kernel spectrum estimate with different multitapers
%J Vladikavkazskij matematičeskij žurnal
%D 2007
%P 56-61
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/
%G en
%F VMJ_2007_9_1_a5
A. A. M. Teamah; H. S. Bakouch. Some asymptotic properties of a kernel spectrum estimate with different multitapers. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 56-61. http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/

[1] Brillinger D. R., Time Series: Data Analysis and Theory, Holt, Rinehart and Winston, New York, 1975 | MR | Zbl

[2] Cleveland W. S., “The inverse autocorrelations of a time”, Series and their applications. Technometrics, 14 (1972), 277–293

[3] Ghazal M. A., Farag E. A., “Asymptotic distribution of spectral density estimate of cotinuous time series on crossed intervals”, The Egyptian Statistical J. (Cairo), 42:2 (1998), 197–214 | MR

[4] Ghazal M. A., “On a spectral density estimate on non-crossed intervals observation”, International J. of Applied Math., 1:8 (1999), 875–882 | MR | Zbl

[5] Hurvich C. M., “A mean squared error criterion for time series data windows”, Biometrika, 75:3 (1988), 485–490 | DOI | MR | Zbl

[6] Koopmans L. H., The Spectral Analysis of Time Series, Acad. press, New York, 1974 | MR | Zbl

[7] McCoy E. J., Some New Statistical Approaches to the Analysis of Long Memory Processes, Ph. D. Thesis, Imperial College, Univ. of London, 1994

[8] Smith R. L., Time Series, a course of Statistics, North Carolina Univ., Chapel Hill, 1999

[9] Teamah A. A. M., Bakouch H. S., “Statistical analysis on the average of periodograms with different tapers and spectral estimates of continuous time processes”, AMSE Periodicals, Advances in Modeling and Analysis, Ser. D, 8:2 (2003), 1–12

[10] Teamah A. A. M., Bakouch H. S., “Asymptotic statistical properties of spectral estimates with different tapers for discrete time processes”, Applied Mathematics and computation, 150 (2004), 681–695 | DOI | MR | Zbl

[11] Thomson D. J., “Spectrum estimation and harmonic analysis”, Proc. IEEE, 70 (1982), 1055–1096 | DOI

[12] Walden A. T., “Some advances in non-parametric multiple time series and spectral analysis”, Environmetrics, 5 (1994), 281–295 | DOI

[13] Walden A. T., McCoy E. J., Percival D. B., “The variance of multitaper spectrum estimates for real Gaussian processes”, IEEE Trans. Sig. Proces., 42:2 (1994), 479–482 | DOI | MR

[14] Walden A. T., McCoy E. J., Percival D. B., “The effective bandwidth of a multitaper spectral estimator”, Biometrika, 82:1 (1995), 201–214 | DOI | MR | Zbl