Some asymptotic properties of a kernel spectrum estimate with different multitapers
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 56-61
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X(t)$, $t=0,\pm 1,\ldots,$ be a zero mean real-valued stationary time series with spectrum $f_{XX}(\lambda )$, $-\pi\le\lambda\le\pi$. Given the realization $X(1),X(2),\dots,X(N)$, we construct $L$ different multitapered periodograms $I_{XX}^{(mt)_{j}}(\lambda)$, $j=1,2,\dots,L$, on non-overlapped and overlapped segments $X^{(j)}(t)$, $1\le t$. Also, we give asymptotic expressions of the mean and variance of the average of these different multitapered periodograms. We obtain an estimate of $f_{XX}(\lambda)$ via $I_{XX}^{(mt)_{j}}(\lambda )$ and different kernels $W_{\beta}^{(j)}(\alpha)$, $j=1,2,\dots,L$; $-\pi\alpha\le\pi$; $\beta$ is a bandwidth. We find asymptotic expressions of the first and second-order moments of this estimate. Moreover, we propose a choice of the considered bandwidth. An asymptotic expression of the integrated relative mean squared error (IMSE) of the estimate is formulated.
@article{VMJ_2007_9_1_a5,
author = {A. A. M. Teamah and H. S. Bakouch},
title = {Some asymptotic properties of a kernel spectrum estimate with different multitapers},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {56--61},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/}
}
TY - JOUR AU - A. A. M. Teamah AU - H. S. Bakouch TI - Some asymptotic properties of a kernel spectrum estimate with different multitapers JO - Vladikavkazskij matematičeskij žurnal PY - 2007 SP - 56 EP - 61 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/ LA - en ID - VMJ_2007_9_1_a5 ER -
A. A. M. Teamah; H. S. Bakouch. Some asymptotic properties of a kernel spectrum estimate with different multitapers. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 56-61. http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/