@article{VMJ_2007_9_1_a5,
author = {A. A. M. Teamah and H. S. Bakouch},
title = {Some asymptotic properties of a kernel spectrum estimate with different multitapers},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {56--61},
year = {2007},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/}
}
TY - JOUR AU - A. A. M. Teamah AU - H. S. Bakouch TI - Some asymptotic properties of a kernel spectrum estimate with different multitapers JO - Vladikavkazskij matematičeskij žurnal PY - 2007 SP - 56 EP - 61 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/ LA - en ID - VMJ_2007_9_1_a5 ER -
A. A. M. Teamah; H. S. Bakouch. Some asymptotic properties of a kernel spectrum estimate with different multitapers. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 56-61. http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/
[1] Brillinger D. R., Time Series: Data Analysis and Theory, Holt, Rinehart and Winston, New York, 1975 | MR | Zbl
[2] Cleveland W. S., “The inverse autocorrelations of a time”, Series and their applications. Technometrics, 14 (1972), 277–293
[3] Ghazal M. A., Farag E. A., “Asymptotic distribution of spectral density estimate of cotinuous time series on crossed intervals”, The Egyptian Statistical J. (Cairo), 42:2 (1998), 197–214 | MR
[4] Ghazal M. A., “On a spectral density estimate on non-crossed intervals observation”, International J. of Applied Math., 1:8 (1999), 875–882 | MR | Zbl
[5] Hurvich C. M., “A mean squared error criterion for time series data windows”, Biometrika, 75:3 (1988), 485–490 | DOI | MR | Zbl
[6] Koopmans L. H., The Spectral Analysis of Time Series, Acad. press, New York, 1974 | MR | Zbl
[7] McCoy E. J., Some New Statistical Approaches to the Analysis of Long Memory Processes, Ph. D. Thesis, Imperial College, Univ. of London, 1994
[8] Smith R. L., Time Series, a course of Statistics, North Carolina Univ., Chapel Hill, 1999
[9] Teamah A. A. M., Bakouch H. S., “Statistical analysis on the average of periodograms with different tapers and spectral estimates of continuous time processes”, AMSE Periodicals, Advances in Modeling and Analysis, Ser. D, 8:2 (2003), 1–12
[10] Teamah A. A. M., Bakouch H. S., “Asymptotic statistical properties of spectral estimates with different tapers for discrete time processes”, Applied Mathematics and computation, 150 (2004), 681–695 | DOI | MR | Zbl
[11] Thomson D. J., “Spectrum estimation and harmonic analysis”, Proc. IEEE, 70 (1982), 1055–1096 | DOI
[12] Walden A. T., “Some advances in non-parametric multiple time series and spectral analysis”, Environmetrics, 5 (1994), 281–295 | DOI
[13] Walden A. T., McCoy E. J., Percival D. B., “The variance of multitaper spectrum estimates for real Gaussian processes”, IEEE Trans. Sig. Proces., 42:2 (1994), 479–482 | DOI | MR
[14] Walden A. T., McCoy E. J., Percival D. B., “The effective bandwidth of a multitaper spectral estimator”, Biometrika, 82:1 (1995), 201–214 | DOI | MR | Zbl