Some asymptotic properties of a kernel spectrum estimate with different multitapers
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 56-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X(t)$, $t=0,\pm 1,\ldots,$ be a zero mean real-valued stationary time series with spectrum $f_{XX}(\lambda )$, $-\pi\le\lambda\le\pi$. Given the realization $X(1),X(2),\dots,X(N)$, we construct $L$ different multitapered periodograms $I_{XX}^{(mt)_{j}}(\lambda)$, $j=1,2,\dots,L$, on non-overlapped and overlapped segments $X^{(j)}(t)$, $1\le t$. Also, we give asymptotic expressions of the mean and variance of the average of these different multitapered periodograms. We obtain an estimate of $f_{XX}(\lambda)$ via $I_{XX}^{(mt)_{j}}(\lambda )$ and different kernels $W_{\beta}^{(j)}(\alpha)$, $j=1,2,\dots,L$; $-\pi\alpha\le\pi$; $\beta$ is a bandwidth. We find asymptotic expressions of the first and second-order moments of this estimate. Moreover, we propose a choice of the considered bandwidth. An asymptotic expression of the integrated relative mean squared error (IMSE) of the estimate is formulated.
@article{VMJ_2007_9_1_a5,
     author = {A. A. M. Teamah and H. S. Bakouch},
     title = {Some asymptotic properties of a kernel spectrum estimate with different multitapers},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--61},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/}
}
TY  - JOUR
AU  - A. A. M. Teamah
AU  - H. S. Bakouch
TI  - Some asymptotic properties of a kernel spectrum estimate with different multitapers
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2007
SP  - 56
EP  - 61
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/
LA  - en
ID  - VMJ_2007_9_1_a5
ER  - 
%0 Journal Article
%A A. A. M. Teamah
%A H. S. Bakouch
%T Some asymptotic properties of a kernel spectrum estimate with different multitapers
%J Vladikavkazskij matematičeskij žurnal
%D 2007
%P 56-61
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/
%G en
%F VMJ_2007_9_1_a5
A. A. M. Teamah; H. S. Bakouch. Some asymptotic properties of a kernel spectrum estimate with different multitapers. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 56-61. http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a5/