A note on weakly $\aleph_1$-separable $p$-groups
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 30-37

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known by Hill-Griffith that there exist $\aleph_1$-separable $p$-primary groups which are not direct sums of cycles. A problem of challenging interest, mainly due to Hill (Rocky Mount. J. Math., 1971), is under what extra circumstances on the group structure this holds untrue, that is every $\aleph_1$-separable $p$-group is a direct sum of cyclic groups. We prove here that any weakly $\aleph_1$-separable $p$-group of cardinality not exceeding $\aleph_1$ is quasi-complete precisely when it is a bounded direct sum of cycles, thus partly answering the posed question in the affirmative.
@article{VMJ_2007_9_1_a2,
     author = {P. V. Danchev},
     title = {A note on weakly $\aleph_1$-separable $p$-groups},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {30--37},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a2/}
}
TY  - JOUR
AU  - P. V. Danchev
TI  - A note on weakly $\aleph_1$-separable $p$-groups
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2007
SP  - 30
EP  - 37
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a2/
LA  - en
ID  - VMJ_2007_9_1_a2
ER  - 
%0 Journal Article
%A P. V. Danchev
%T A note on weakly $\aleph_1$-separable $p$-groups
%J Vladikavkazskij matematičeskij žurnal
%D 2007
%P 30-37
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a2/
%G en
%F VMJ_2007_9_1_a2
P. V. Danchev. A note on weakly $\aleph_1$-separable $p$-groups. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 30-37. http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a2/