@article{VMJ_2007_9_1_a0,
author = {D. A. Abanina},
title = {On {Borel's} extension theorem for general {Beurling} classes of ultradifferentiable functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {3--15},
year = {2007},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a0/}
}
D. A. Abanina. On Borel's extension theorem for general Beurling classes of ultradifferentiable functions. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/VMJ_2007_9_1_a0/
[1] Abanin A. V., “On Whitney's extension theorem for spaces of ultradifferentiable functions”, Math. Ann., 320 (2001), 115–126 | DOI | MR | Zbl
[2] Abanin A. V., Banach spaces of test functions in generalized approach of Beurling-Björck, Vladikavkaz Scientific Center, Vladikavkaz, 2004, 16–33 (In Russian)
[3] Sib. Math. J., 47 (2006), 397–409 | DOI | MR | Zbl
[4] Abanina D. A., “On Borel's theorem for spaces of ultradifferentiable functions of mean type”, Results Math., 44 (2003), 195–213 | MR | Zbl
[5] Abanina D. A., “Absolutely representing systems of exponentials with imaginary exponents in ultrajet spaces of normal type and the extension of Whitney functions”, Vladikavkaz. Math. J., 7 (2005), 3–15 (In Russian) | MR
[6] Boas R. P., Entire functions, Academic Press, New York, 1954, 276 pp. | MR | Zbl
[7] Borel E., “Sur quelques points de la théorie des fonctions”, Ann. Sci. Ec. Norm. Super. 3 Ser., 12 (1895), 9–55 | MR | Zbl
[8] Meise R., Taylor B. A., “Whitney's extension theorem for ultradifferentiable functions of Beurling type”, Ark. Mat., 26 (1988), 265–287 | DOI | MR | Zbl
[9] Meise R., Vogt D., Einführung in die Funktionalanalysis, Vieweg, Braunschweig, 1992, 416 pp. | MR | Zbl