On a Strassen-type theorem in the space of measurable selectors
Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 4, pp. 32-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2006_8_4_a4,
     author = {A. G. Kusraev},
     title = {On a {Strassen-type} theorem in the space of measurable selectors},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {32--37},
     year = {2006},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_4_a4/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - On a Strassen-type theorem in the space of measurable selectors
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2006
SP  - 32
EP  - 37
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2006_8_4_a4/
LA  - ru
ID  - VMJ_2006_8_4_a4
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T On a Strassen-type theorem in the space of measurable selectors
%J Vladikavkazskij matematičeskij žurnal
%D 2006
%P 32-37
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2006_8_4_a4/
%G ru
%F VMJ_2006_8_4_a4
A. G. Kusraev. On a Strassen-type theorem in the space of measurable selectors. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 4, pp. 32-37. http://geodesic.mathdoc.fr/item/VMJ_2006_8_4_a4/

[1] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Izd-vo IM SO RAN, Novosibirsk, 1995, 63–211 | MR

[2] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985, 352 pp. | MR

[3] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003, 619 pp. | MR

[4] Kluwer Academic Publishers, Dordrecht, 1995, 398 pp. | MR | Zbl | Zbl

[5] Castaing Ch., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., 580, Springer, Berlin etc., 1977, 278 pp. | MR | Zbl

[6] Strassen V., “The existence of probability measures with given martingals”, Ann. Math. Stat., 36 (1965), 423–439 | DOI | MR | Zbl