@article{VMJ_2006_8_3_a4,
author = {Yu. Kh. \`Eshkabilov},
title = {On the spectral properties of operators in the {Friedrichs} model with a noncompact kernel in the space of functions of two variables},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {53--67},
year = {2006},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_3_a4/}
}
TY - JOUR AU - Yu. Kh. Èshkabilov TI - On the spectral properties of operators in the Friedrichs model with a noncompact kernel in the space of functions of two variables JO - Vladikavkazskij matematičeskij žurnal PY - 2006 SP - 53 EP - 67 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2006_8_3_a4/ LA - ru ID - VMJ_2006_8_3_a4 ER -
%0 Journal Article %A Yu. Kh. Èshkabilov %T On the spectral properties of operators in the Friedrichs model with a noncompact kernel in the space of functions of two variables %J Vladikavkazskij matematičeskij žurnal %D 2006 %P 53-67 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2006_8_3_a4/ %G ru %F VMJ_2006_8_3_a4
Yu. Kh. Èshkabilov. On the spectral properties of operators in the Friedrichs model with a noncompact kernel in the space of functions of two variables. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 3, pp. 53-67. http://geodesic.mathdoc.fr/item/VMJ_2006_8_3_a4/
[1] Malyshev V. A., Minlos R. A., “Klasternye operatory”, Tr. seminara im. I. G. Petrovskogo, 9, 1983, 63–80 | MR | Zbl
[2] Mattis D. C., “The few-body problem on lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR
[3] Mogilner A. I., “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results”, Adv. Soviet. Math., 5, 1991, 139–194 | MR | Zbl
[4] Lakaev S. N., “Svyazannye sostoyaniya i rezonansy N-chastichnogo diskretnogo operatora Shredingera”, TMF, 91:1 (1992), 51–65 | MR
[5] Lakaev S. N., “Ob effekte Efimova v sisteme trekh odinakovykh chastits”, Funktsion. analiz i ego pril., 27:3 (1993), 15–28 | MR | Zbl
[6] Zhukov Yu. V., “Teorema Iorio-O'Kerrola dlya N-chastichnogo reshetchatogo gamiltoniana”, TMF, 107:1 (1996), 75–85 | MR | Zbl
[7] Izyumov Yu. A., Medvedev M. V., Teoriya magnito-uporyadochennykh kristallov s primesyu, Nauka, M., 1970, 271 pp.
[8] Balagurov B. Ya., Vaks V. G., “K teorii antiferromagnitnykh primesei v magnitikakh”, ZhETF, 66 (1974), 1135–1149
[9] Dyakin V. V., Letfulov B. M., “Lokalizovannye spin-polyaronnye sostoyaniya v ferromagnitikakh”, TMF, 73:3 (1987), 454–462
[10] Eshkabilov Yu. Kh., “Ob odnom «dvukhchastichnom» i «trekhchastichnom» operatore Shredingera”, Kolmogorov i sovremennaya matematika, Tezisy dokl. Mezhd. konf., M., 2003, 362–363
[11] Eshkabilov Yu. Kh., “Ob odnom nekompaktnom vozmuschenii v nepreryvnom spektre operatora umnozheniya na funktsiyu”, Uzb. mat. zhurn., 2003, no. 1, 81–88
[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 427 pp. | MR
[13] Eshkabilov Yu. Kh., “O diskretnom spektre tenzornoi summy operatorov”, Dokl. AN RUz, 2005, no. 1, 6–10 | MR
[14] Trikomi F., Integralnye uravneniya, IL, M., 1960, 300 pp.
[15] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 357 pp. | MR
[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Nauka, M., 1966, 607 pp.